日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 橢圓數(shù)學(xué)公式的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓x2+y2-1上,過右焦點(diǎn)作相互相垂直的兩條弦AB,CD,設(shè)M,N分別為AB,CD的中點(diǎn).
          (1)求橢圓的方程;
          (2)證明直線MN恒過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

          (1)解:由題意,橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓x2+y2-1上
          ∴b=c=1,∴a2=b2+c2=2
          ∴橢圓的方程為
          (2)證明:當(dāng)AB的斜率為0或不存在時(shí),直線MN的方程為y=0;
          當(dāng)AB的斜率存在且不為0時(shí),設(shè)直線AB的方程為y=k(x-1)
          設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),則點(diǎn)M的坐標(biāo)為(
          直線AB的方程y=k(x-1)與橢圓方程聯(lián)立,消去y可得(2k2+1)-4k2x+2k2-2=0
          ∴x1+x2=
          ∴y1+y2=k(x1+x2-2)=
          ∴M(
          同理可得N(
          ∴直線MN的方程為:=
          化簡可得(2-2k2)y=3k(x-
          ∴直線MN恒過定點(diǎn)(,0).
          分析:(1)根據(jù)橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓x2+y2-1上,可得b=c=1,從而可求橢圓的方程;
          (2)直線AB的方程與橢圓方程聯(lián)立,確定M、N的坐標(biāo),可得直線MN的方程,化簡即可得到直線MN恒過定點(diǎn).
          點(diǎn)評(píng):本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系,考查直線恒過定點(diǎn),確定直線MN的方程是關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
          x2
          4
          +y2=1

          (1)若橢圓C2
          x2
          16
          +
          y2
          4
          =1
          ,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說明理由;
          (2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
          (3)如圖:直線y=x與兩個(gè)“相似橢圓”M:
          x2
          a2
          +
          y2
          b2
          =1
          Mλ
          x2
          a2
          +
          y2
          b2
          =λ2(a>b>0,0<λ<1)
          分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似比的兩個(gè)相似三角形,寫出具體作法.(不必證明)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•徐匯區(qū)三模)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
          x2
          4
          +y2=1

          (1)若橢圓C2
          x2
          16
          +
          y2
          4
          =1
          ,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說明理由;
          (2)寫出與橢圓C1相似且短半軸長為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
          (3)如圖:直線l與兩個(gè)“相似橢圓”
          x2
          a2
          +
          y2
          b2
          =1
          x2
          a2
          +
          y2
          b2
          =λ2(a>b>0,0<λ<1)
          分別交于點(diǎn)A,B和點(diǎn)C,D,證明:|AC|=|BD|

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          橢圓的兩個(gè)焦點(diǎn)和短軸兩個(gè)頂點(diǎn)是一個(gè)含60°角的菱形的四個(gè)頂點(diǎn),則橢圓的離心率為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年黑龍江省高二下學(xué)期期中考試數(shù)學(xué)(理) 題型:填空題

          1.         若橢圓的兩個(gè)焦點(diǎn)和短軸兩個(gè)頂點(diǎn)是有一個(gè)內(nèi)角為的菱形的四個(gè)頂點(diǎn),則橢圓的離心率為         

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年黑龍江省高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:填空題

          橢圓的兩個(gè)焦點(diǎn)和短軸兩個(gè)頂點(diǎn)是有一個(gè)內(nèi)角為的菱形的四個(gè)頂點(diǎn),則橢圓的離心率為         

           

          查看答案和解析>>

          同步練習(xí)冊答案