日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)

          )討論函數(shù)的單調(diào)性;

          )若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

          【答案】)當(dāng)時(shí),上單調(diào)遞減;當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增;(

          【解析】

          試題()要討論單調(diào)性,首先求得導(dǎo)數(shù),接著研究的正負(fù),為此按的正負(fù)分類;()由()知符合題意的必須滿足,此時(shí),當(dāng)時(shí),,因此只要函數(shù)的最小值即可滿足題意.

          試題解析:(

          當(dāng)上單調(diào)遞減;

          當(dāng).

          .

          函數(shù)上單調(diào)遞減,在上單調(diào)遞增

          綜上:當(dāng)上單調(diào)遞減;

          當(dāng)時(shí),函數(shù)上單調(diào)遞減,在上單調(diào)遞增

          )當(dāng)由()得上單調(diào)遞減,函數(shù)不可能有兩個(gè)零點(diǎn);

          當(dāng)a>0時(shí),由()得,且當(dāng)x趨近于0和正無窮大時(shí),都趨近于正無窮大,

          故若要使函數(shù)有兩個(gè)零點(diǎn),則的極小值,

          ,解得,

          綜上所述,的取值范圍是

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是等邊三角形, 邊上的動(dòng)點(diǎn)(含端點(diǎn)),記,.

          (1)求的最大值;

          (2)若,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知下列命題:

          ①函數(shù)上單調(diào)遞減,在上單調(diào)遞增;

          ②若函數(shù)上有兩個(gè)零點(diǎn),則的取值范圍是;

          ③函數(shù)上單調(diào)遞減;

          ④當(dāng)時(shí),函數(shù)的最大值為.

          上述命題正確的是__________(填序號(hào)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知橢圓的焦距為4,且過點(diǎn)

          1)求橢圓的方程

          2)設(shè)橢圓的上頂點(diǎn)為,右焦點(diǎn)為,直線與橢圓交于、兩點(diǎn),問是否存在直線,使得的垂心,若存在,求出直線的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=x+22cosx

          1)求函數(shù)fx)在[,]上的最值:

          2)若存在x∈(0,)使不等式fxax成立,求實(shí)數(shù)a的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓離心率為,四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積是4.

          (1)求橢圓C的標(biāo)準(zhǔn)方程;

          (2)若直線與橢圓C交于P,Q均在第一象限,直線OP,OQ的斜率分別為,,且(其中O為坐標(biāo)原點(diǎn)).證明:直線l的斜率k為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平行四邊形中,,,過點(diǎn)作的垂線,交的延長線于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

          (1)證明:平面平面;

          (2)若的中點(diǎn),的中點(diǎn),且平面平面,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將函數(shù)gx)=﹣4sin2+2圖象上點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再向右平移個(gè)單位長度,得到函數(shù)fx)的圖象,則下列說法正確的是(

          A.函數(shù)fx)在區(qū)間[]上單調(diào)遞減

          B.函數(shù)fx)的最小正周期為2π

          C.函數(shù)fx)在區(qū)間[,]的最小值為

          D.x是函數(shù)fx)的一條對(duì)稱軸

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fxx+alnx

          1)求fx)在(1,f1))處的切線方程(用含a的式子表示)

          2)討論fx)的單調(diào)性;

          3)若fx)存在兩個(gè)極值點(diǎn)x1,x2,證明:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案