【題目】為調(diào)查某小區(qū)居民的“幸福度”,F(xiàn)從所有居民中隨機(jī)抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉),若幸福度分?jǐn)?shù)不低于8.5分,則稱(chēng)該人的幸福度為“幸福”。
(1)求從這16人中隨機(jī)選取3人,至少有2人為“幸!钡母怕;
(2)以這16人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)小區(qū)的總體數(shù)據(jù),若從該小區(qū)(人數(shù)很多)任選3人,記表示抽到“幸!钡娜藬(shù),求
的分布列及數(shù)學(xué)期望和方差。
【答案】(1);(2)
的分布列見(jiàn)解析;數(shù)學(xué)期望為
;方差為
【解析】
首先由莖葉圖統(tǒng)計(jì)出“幸福”的人數(shù)和其他人數(shù),再計(jì)算概率。
由莖葉圖知任選一人,該人幸福度為“幸!钡母怕蕿,知道在該小區(qū)中任選一人該人幸福度為“幸福”的概率為
,再計(jì)算即可。
(1)由莖葉圖可知,抽取的16人中“幸福”的人數(shù)有12人,其他的有4人;
記“從這16人中隨機(jī)選取3人,至少有2人是“幸!,”為事件.
由題意得
(2)由莖葉圖知任選一人,該人幸福度為“幸!钡母怕蕿,
的可能取值為0,1,2,3,
顯然
則;
;
;
;
所以的分布列為
0 | 1 | 2 | 3 | |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè),曲線
在點(diǎn)
處的切線在
軸上的截距為
,求
的最小值;
(2)若只有一個(gè)零點(diǎn)
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員進(jìn)行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,求下列事件的概率:
(1)兩人都中靶;
(2)恰好有一人中靶;
(3)兩人都脫靶;
(4)至少有一人中靶.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù),
.
(1)當(dāng)時(shí),解關(guān)于
的不等式
;
(2)若對(duì)任意,都存在
,使得不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,
是橢圓
上的兩個(gè)不同點(diǎn).
(1)若,且點(diǎn)
所在直線方程為
,求
的值;
(2)若直線的斜率之積為
,線段
上有一點(diǎn)
滿足
,連接
并廷長(zhǎng)交橢圓
于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次測(cè)量中得到的A樣本數(shù)據(jù)如下:52,54,54,56,56,56,55,55,55,55.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加6后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對(duì)應(yīng)相同的是( )
A. 眾數(shù) B. 平均數(shù)
C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過(guò)AC的平面交BD于點(diǎn)E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(1)若曲線在
處的切線方程為
,求實(shí)數(shù)
的值;
(2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù)
,
,都有
恒成立,求實(shí)數(shù)
的取值范圍;
(3)若在上存在一點(diǎn)
,使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com