已知橢圓的中心為直角坐標(biāo)系
的原點(diǎn),焦點(diǎn)在
軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓
的動(dòng)點(diǎn),
為過
且垂直于
軸的直線上的點(diǎn),
(
為橢圓的離心率),求點(diǎn)
的軌跡方程,并說明軌跡是什么曲線.
(1);(2)軌跡方程為
軌跡是兩條平行于x軸的線段.
解析試題分析:(1)橢圓有四個(gè)(兩對(duì))頂點(diǎn),短軸的兩個(gè)頂點(diǎn)到焦點(diǎn)的距離相等,這里可見是長軸的兩頂點(diǎn),于是有,可求得
,以及橢圓方程;(2)動(dòng)點(diǎn)
的運(yùn)動(dòng)是由點(diǎn)
在橢圓上運(yùn)動(dòng)引起的,因此要求點(diǎn)
的軌跡方程,我們采取動(dòng)點(diǎn)轉(zhuǎn)移法,借助于點(diǎn)
,就是設(shè)
點(diǎn)坐標(biāo)為
,動(dòng)點(diǎn)
的坐標(biāo)為
,想辦法用
表示
,然后把
代入
點(diǎn)所在的橢圓的方程,即可得動(dòng)點(diǎn)
的軌跡方程,化簡即可。
試題解析:(1)設(shè)橢圓長半軸長及分別為a,c,由已知得
{ 解得a=4,c=3,所以橢圓C的方程為
(2Ⅱ)設(shè)M(x,y),P(x,),其中
由已知得
而
,故
①
由點(diǎn)P在橢圓C上得 代入①式并化簡得
所以點(diǎn)M的軌跡方程為軌跡是兩條平行于x軸的線段.
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)動(dòng)點(diǎn)轉(zhuǎn)移法求軌跡方程,軌跡。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),
,直線AG,BG相交于點(diǎn)G,且它們的斜率之積是
.
(Ⅰ)求點(diǎn)G的軌跡的方程;
(Ⅱ)圓上有一個(gè)動(dòng)點(diǎn)P,且P在x軸的上方,點(diǎn)
,直線PA交(Ⅰ)中的軌跡
于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為
,
,若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動(dòng)直線與橢圓
有且僅有一個(gè)公共點(diǎn),點(diǎn)
是直線
上的兩點(diǎn),且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、
分別是橢圓
的左、右焦點(diǎn),右焦點(diǎn)
到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓
交于
兩點(diǎn),若弦
的中點(diǎn)為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)設(shè)直線經(jīng)過點(diǎn)
(0,1),且與橢圓C交于
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,橢圓
上的點(diǎn)到焦點(diǎn)距離的最大值為
,最小值為
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)
、
,且線段
的垂直平分線過定點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線
相切,過點(diǎn)P(4,0)且不垂直于x軸直線
與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線:
和⊙
:
,過拋物線
上一點(diǎn)
作兩條直線與⊙
相切于
、
兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)
到拋物線準(zhǔn)線的距離為
.
(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直
軸時(shí),求直線
的斜率;
(3)若直線在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知圓
和圓
.
(1)若直線過點(diǎn)
,且被圓
截得的弦長為
,求直線
的方程;
(2)設(shè)為平面上的點(diǎn),滿足:存在過點(diǎn)
的無窮多對(duì)互相垂直的直線
和
,它們分別與圓
和圓
相交,且直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,試求所有滿足條件的點(diǎn)
的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com