已知點(diǎn),
,直線AG,BG相交于點(diǎn)G,且它們的斜率之積是
.
(Ⅰ)求點(diǎn)G的軌跡的方程;
(Ⅱ)圓上有一個(gè)動(dòng)點(diǎn)P,且P在x軸的上方,點(diǎn)
,直線PA交(Ⅰ)中的軌跡
于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為
,
,若
,求實(shí)數(shù)
的取值范圍.
(Ⅰ)的方程是
(
);(Ⅱ)
.
解析試題分析:(Ⅰ)設(shè),代入
即得
的軌跡方程:
;(Ⅱ)注意,AB是圓
的直徑,所以直線
,
,即
.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/67/c/tumzi.png" style="vertical-align:middle;" />,所以
.為了求
的取值范圍,我們將
用某個(gè)變量表示出來.為此,設(shè)
,∵動(dòng)點(diǎn)
在圓
上,所以
,這樣得一
間的關(guān)系式.我們可以將
都用
表示出來,然后利用
將
換掉一個(gè),這樣就可得
的取值范圍.這里為什么不設(shè)
,請(qǐng)讀者悟一悟其中的奧妙
試題解析:(Ⅰ)設(shè),由
得,
(
), 3分
化簡(jiǎn)得動(dòng)點(diǎn)G的軌跡的方程為
(
). 6分
(未注明條件“”扣1分)
(Ⅱ)設(shè),∵動(dòng)點(diǎn)P在圓
上,∴
,即
,
∴,又
(
), 8分
由,得
,
∴, 10分
由于且
, 11分
解得. 13分
考點(diǎn):1、橢圓及圓的方程的方程;2、直線與圓錐曲線的關(guān)系;3、范圍問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),
,動(dòng)點(diǎn)
滿足
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)在直線:
上取一點(diǎn)
,過點(diǎn)
作軌跡
的兩條切線,切點(diǎn)分別為
.問:是否存在點(diǎn)
,使得直線
//
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知坐標(biāo)平面內(nèi):
,
:
.動(dòng)點(diǎn)P與
外切與
內(nèi)切.
(1)求動(dòng)圓心P的軌跡的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線交于兩點(diǎn)A、B,求AB的長(zhǎng);
(3)過D的動(dòng)直線與曲線交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、
為橢圓
的左、右焦點(diǎn),且點(diǎn)
在橢圓
上.
(1)求橢圓的方程;
(2)過的直線
交橢圓
于
兩點(diǎn),則
的內(nèi)切圓的面積是否存在最大值?
若存在其最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓的離心率為
,
在橢圓C上,A,B為橢圓C的左、右頂點(diǎn).
(1)求橢圓C的方程:
(2)若P是橢圓上異于A,B的動(dòng)點(diǎn),連結(jié)AP,PB并延長(zhǎng),分別與右準(zhǔn)線相交于M1,M2.問是否存在x軸上定點(diǎn)D,使得以M1M2為直徑的圓恒過點(diǎn)D?若存在,求點(diǎn)D的坐標(biāo):若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線的弦所在的直線方程;
(2)過點(diǎn)(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為直角坐標(biāo)系
的原點(diǎn),焦點(diǎn)在
軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓的方程;
(2)若為橢圓
的動(dòng)點(diǎn),
為過
且垂直于
軸的直線上的點(diǎn),
(
為橢圓的離心率),求點(diǎn)
的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com