日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖;在直角梯形ABCD中,AB⊥AD,AD=DC=2,AB=6,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與直線BD相切的圓上運(yùn)動(dòng),設(shè)
          AP
          =m
          AD
          +n
          AB
          (m,n∈R)
          ,則m+n的取值范圍是
          [1,
          5
          3
          ]
          [1,
          5
          3
          ]
          分析:建立直角坐標(biāo)系,寫出點(diǎn)的坐標(biāo),求出BD的方程,求出圓的方程;設(shè)出P的坐標(biāo),求出三個(gè)向量的坐標(biāo),將P的坐標(biāo)用m,n表示,代入圓內(nèi)方程求出范圍.
          解答:解:以A為坐標(biāo)原點(diǎn),AB為x軸,DA為y軸建立平面直角坐標(biāo)系,則A(0,0),D(0,2),C(2,2),B(6,0)
          直線BD的方程為x+3y-6=0,C到BD的距離d=
          2
          10
          =
          10
          5

          ∴以點(diǎn)C為圓心,且與直線BD相切的圓方程為(x-2)2+(y-2)2=
          2
          5
          ,
          設(shè)P(x,y)則
          AP
          =(x,y),
          AD
          =(0,2),
          AB
          =(6,0)
          ∴(x,y)=(6n,2m)
          ∴x=6n,y=2m,
          ∵P在圓內(nèi)或圓上
          ∴(6n-1)2+(2m-1)2
          2
          5
          ,
          解得1≤m+n≤
          5
          3

          故答案為:[1,
          5
          3
          ].
          點(diǎn)評(píng):通過建立直角坐標(biāo)系將問題代數(shù)化、考查直線與圓相切的條件、考查向量的坐標(biāo)公式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
          2
          a.
          (Ⅰ)求證:平面SAB⊥平面SAD;
          (Ⅱ)設(shè)SB的中點(diǎn)為M,且DM⊥MC,試求出四棱錐S-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.點(diǎn)E、F分別是PC、BD的中點(diǎn),現(xiàn)將△PDC沿CD折起,使PD⊥平面ABCD,
          (1)求證:EF∥平面PAD;
          (2)求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,動(dòng)點(diǎn)P在BCD內(nèi)運(yùn)動(dòng)(含邊界),設(shè)
          AP
          AD
          AB
          ,則α+β的最大值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P為CD的中點(diǎn),則
          PA
          PB
          的值為
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分別為線段CD、AB上的點(diǎn),且EF∥AD.將梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD與平面ADEF所成角正切值為
          2
          2

          (Ⅰ)求證:BC⊥平面BDE;
          (Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案