日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某水果批發(fā)商經(jīng)銷某種水果(以下簡稱A水果),購入價為300/袋,并以360元/袋的價格售出,若前8小時內(nèi)所購進的A水果沒有售完,則批發(fā)商將沒售完的A水果以220元/袋的價格低價處理完畢(根據(jù)經(jīng)驗,2小時內(nèi)完全能夠把A水果低價處理完,且當(dāng)天不再購進).該水果批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100A水果在每天的前8小時內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

          現(xiàn)以記錄的100天的A水果在每天的前8小時內(nèi)的銷售量的頻率作為A水果在一天的前8小時內(nèi)的銷售量的概率,記X表示A水果一天前8小時內(nèi)的銷售量,n表示水果批發(fā)商一天批發(fā)A水果的袋數(shù).

          1)求X的分布列;

          2)以日利潤的期望值為決策依據(jù),在中選其一,應(yīng)選用哪個?

          【答案】1)分布列見解析(2)選.

          【解析】

          1)由題意知,根據(jù)條形圖,得到銷售量分別為14,1516,17的頻率,進而得到隨機變量X的分布列;

          2)分別求得當(dāng)時,利潤的數(shù)學(xué)期望,比較即可得到結(jié)論.

          1)由題意知,根據(jù)條形圖,可得A水果在每天的前8小時內(nèi)的銷售量分別為14,15,16,17的頻率分別是0.20.3,0.40.1 ,

          所以X的分布列為

          14

          15

          16

          17

          0.2

          0.3

          0.4

          0.1

          2)當(dāng)時,設(shè)Y為水果批發(fā)商的日利潤,則Y的可能取值為760,900

          可得,

          所以期望

          當(dāng)時,設(shè)Z為水果批發(fā)商的日利潤,則Z的可能取值為680,820,960,

          可得

          所以期望.

          因為,

          綜上可知,當(dāng)時的日利潤期望值大于時的日利潤期望值,故選.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下圖是某市31日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇31日至313日中的某一天到達(dá)該市,并停留2.

          (Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率;

          (Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),X的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中

          (Ⅰ)若,討論的單調(diào)性;

          (Ⅱ)若,當(dāng)時,恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市《城市總體規(guī)劃(年)》提出到2035年實現(xiàn)“15分鐘社區(qū)生活圈全覆蓋的目標(biāo),從教育與文化、醫(yī)療與養(yǎng)老、交通與購物、休閑與健身4個方面構(gòu)建“15分鐘社區(qū)生活圈指標(biāo)體系,并依據(jù)“15分鐘社區(qū)生活圈指數(shù)高低將小區(qū)劃分為:優(yōu)質(zhì)小區(qū)(指數(shù)為、良好小區(qū)(指數(shù)為0.4-0.63、中等小區(qū)(指數(shù)為0.2~0.4)以及待改進小區(qū)(指數(shù)為0-0.2)4個等級.下面是三個小區(qū)4個方面指標(biāo)值的調(diào)查數(shù)據(jù):

          注:每個小區(qū)”15分鐘社區(qū)生活圈指數(shù)其中、、為該小區(qū)四個方面的權(quán)重,為該小區(qū)四個方面的指標(biāo)值(小區(qū)每一個方面的指標(biāo)值為之間的一個數(shù)值)

          現(xiàn)有100個小區(qū)的“15分鐘社區(qū)生活圈指數(shù)數(shù)據(jù),整理得到如下頻數(shù)分布表:

          1)分別判斷A、B、C三個小區(qū)是否是優(yōu)質(zhì)小區(qū),并說明理由;

          2)對這100個小區(qū)按照優(yōu)質(zhì)小區(qū)、良好小區(qū)、中等小區(qū)和待改進小區(qū)進行分層抽樣,抽取10個小區(qū)進行調(diào)查,若在抽取的10個小區(qū)中再隨機地選取2個小區(qū)做深入調(diào)查,記這2個小區(qū)中為優(yōu)質(zhì)小區(qū)的個數(shù)為ζ,求ζ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點在橢圓 上, 是橢圓的一個焦點.

          )求橢圓的方程;

          )橢圓C上不與點重合的兩點, 關(guān)于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某省確定從2021年開始,高考采用的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進行調(diào)查.

          1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);

          2)學(xué)校計劃在高二上學(xué)期開設(shè)選修中的物理歷史兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進行問卷調(diào)杳(假定每名學(xué)生在這兩個科目中必須洗擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有的把握認(rèn)為選擇科目與性別有關(guān)?說明你的理由;

          性別

          選擇物理

          選擇歷史

          總計

          男生

          50

          女生

          30

          總計

          3)在(2)的條件下,從抽取的選擇物理的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對物理的選課意向作深入了解,求2人中至少有1名女生的概率.

          附:,其中.

          0.100

          0.050

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若,求的單調(diào)區(qū)間;

          2)證明:(i;

          ii)對任意恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020216日在呼倫貝爾市盛大開幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:

          1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據(jù)頻率分布直方圖補全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);

          2)在全校“冰雪迷”中按性別分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.

          附表及公式:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          ,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為坐標(biāo)原點,為坐標(biāo)平面內(nèi)動點,且成等差數(shù)列.

          1)求動點的軌跡方程;

          2)設(shè)點的軌跡為曲線,過點作直線交兩點(不與原點重合),是否存在軸上一定點,使得_________.若存在,求出定點,若不存在,說明理由.從“①作點關(guān)于軸的對稱點,則三點共線;②”這兩個條件中選一個,補充在上面的問題中并作答(注:如果選擇兩個條件分別作答,按第一個解答計分)

          查看答案和解析>>

          同步練習(xí)冊答案