日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點(diǎn),若對(duì)于任意實(shí)數(shù)x1,x2,當(dāng)x1+x2=0時(shí),以P,Q為切點(diǎn)分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時(shí)函數(shù)f(x)取得極小值1.
          (1)求函數(shù)f(x)的解析式;
          (2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點(diǎn),過(guò)M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點(diǎn),直線x=6與x軸交于C點(diǎn),求△ABC的面積的最大值.
          【答案】分析:(1)先由題意:f'(x)=3x2+2ax+b,根據(jù)f'(-x)=f'(x)恒成立知a=0,又由是題意得,結(jié)合由①②③得a,b,c.從而寫(xiě)出函數(shù)f(x)的解析式;
          (2)由(1)得:g(x)=f(x)+3x-3=x3(1≤x≤6)利用導(dǎo)數(shù)幾何求得g(x)在M處的切線方程,從而表示出△ABC的面積的函數(shù)解析式,利用導(dǎo)數(shù)研究其單調(diào)性,從而求得其最大值即可得出△ABC的面積的最大值.
          解答:解:(1)由題意:f'(x)=3x2+2ax+b
          且f'(-x)=f'(x)恒成立知a=0①
          又由
          由①②③得:a=0,b=-3,c=3,f(x)=x3-3x+3…(5分)
          (2)g(x)=f(x)+3x-3=x3(1≤x≤6)
          g(x)在M處的切線方程是:y-t3=3t2(x-t),
          即y=3t2x-2t3(1≤t≤6)
          令x=6可得:B(6,18t2-2t3),C(6,0).
          △ABC的面積S=(6-t)(18t2-2t3)=t4-12t3+54t2
          S′=t3-36t2+108t=t(2t-9)(t-9),
          令S′=0可得:t=,t-=0(舍),t=9(舍),
          ∴S在[1,]上為增函數(shù),[,6]上為減函數(shù),
          ∴△ABC的面積的最大值為S()=
          點(diǎn)評(píng):本小題主要考查函數(shù)單調(diào)性的應(yīng)用、函數(shù)在某點(diǎn)取得極值的條件、函數(shù)的解析式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知點(diǎn)P(x1,y1)不在直線l:Ax+By+C=0(B≠0)上,則P在直線l上方的充要條件是
           
          ,P在直線l下方的充要條件是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知F1、F2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1,(a>b>0)
          的左焦點(diǎn)和右焦點(diǎn),O是坐標(biāo)系原點(diǎn),且橢圓C的焦距為6,過(guò)F1的弦AB兩端點(diǎn)A、B與F2所成△ABF2的周長(zhǎng)是12
          2

          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)已知點(diǎn)P(x1,y1),Q(x2,y2)是橢圓C上不同的兩點(diǎn),線段PQ的中點(diǎn)為M(2,1),求直線PQ的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知點(diǎn)P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點(diǎn),若對(duì)于任意實(shí)數(shù)x1,x2,當(dāng)x1+x2=0時(shí),以P,Q為切點(diǎn)分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時(shí)函數(shù)f(x)取得極小值1.
          (1)求函數(shù)f(x)的解析式;
          (2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點(diǎn),過(guò)M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點(diǎn),直線x=6與x軸交于C點(diǎn),求△ABC的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知點(diǎn)P(x1,y1),Q(x2,y2)(x1≠x2)是函數(shù)f(x)=x3+ax2+bx+c的圖象上的兩點(diǎn),若對(duì)于任意實(shí)數(shù)x1,x2,當(dāng)x1+x2=0時(shí),以P,Q為切點(diǎn)分別作函數(shù)f(x)的圖象的切線,則兩切線必平行,并且當(dāng)x=1時(shí)函數(shù)f(x)取得極小值1.
          (1)求函數(shù)f(x)的解析式;
          (2)若M(t,g(t))是函數(shù)g(x)=f(x)+3x-3(1≤x≤6)的圖象上的一點(diǎn),過(guò)M作函數(shù)g(x)圖象的切線,切線與x軸和直線x=6分別交于A,B兩點(diǎn),直線x=6與x軸交于C點(diǎn),求△ABC的面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案