日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長是( )
          A.3
          B.
          C.2
          D.
          【答案】分析:由OP⊥PC,OP所在的直線過圓心,由垂徑定理,我們可得PC為半弦長,延長CP后,根據(jù)相交弦定理,我們可以得到未知量PC與已知量AP、PB的關系,由此不難得到結論.
          解答:解:如圖,延長CP,交⊙O于D
          ∵PC⊥OP
          由垂徑定理可得:
          PC=PD
          由相交弦定理得:
          PA•PB=PC•PD=PC2
          又由AP=4,PB=2
          ∴PC=
          故選B
          點評:本題考查的知識點,是相交弦定理,但切入點是由已知的條件,OP⊥PC,OP所在直線過圓心,這是垂徑定理的前提條件,由此想到延長PC,構造出兩條相交的弦,故熟練掌握相關定理,包括前提條件在內,是解決問題的捷徑.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網選做題
          如圖,已知AB是⊙O的直徑,AC是弦,AD⊥CE,垂足為D,AC平分∠BAD.
          (Ⅰ)求證:直線CE是⊙O的切線;(Ⅱ)求證:AC2=AB•AD.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網如圖,已知AB是⊙O的一條弦,點P為AB上一點,PC⊥OP,PC交⊙O于C,若AP=4,PB=2,則PC的長是( 。
          A、3
          B、2
          2
          C、2
          D、
          2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知AB是⊙O的直徑,點C是⊙O上的動點(異于A、B),過動點C的直線VC垂直于⊙O所在的平面,D,E分別是VA,VC的中點.
          (1)求證:直線ED⊥平面VBC;
          (2)若VC=AB=2BC,求直線EO與平面VBC所成角大小的正切值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
          (Ⅰ)求證:AD⊥CD;
          (Ⅱ)若AD=2,AC=
          5
          ,求AB的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網如圖,已知AB是⊙O的直徑,BC是⊙O的切線,切點為B,OC平行于弦AD,OA=2.
          (1)求證:DC是⊙O的切線;
          (2)求AD•OC的值;
          (3)若AD+OC=9,求CD的長.

          查看答案和解析>>

          同步練習冊答案