日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,M(-2,0)和N(2,0)是平面上的兩點,動點P滿足:||PM|-|PN||=2.
          (Ⅰ)求點P的軌跡方程;
          (Ⅱ)設(shè)d為點P到直線l:的距離,若|PM|=2|PN|2,求的值.

          【答案】分析:(1)聯(lián)系雙曲線的第一定義,半焦距c=2,實半軸a=1,從而虛半軸b=,
          (2)聯(lián)系雙曲線的第二定義,到定點距離比上到對應(yīng)直線的距離等于常數(shù)e(離心率).
          解答:解:(I)由雙曲線的定義,點P的軌跡是以M、N為焦點,實軸長2a=2的雙曲線.
          因此半焦距c=2,實半軸a=1,從而虛半軸b=,
          所以雙曲線的方程為
          (II)解法一:
          由(I)及答(21)圖,易知|PN|≥1,因|PM|=2|PN|2,①
          知|PM|>|PN|,故P為雙曲線右支上的點,所以|PM|=|PN|+2.②
          將②代入①,得2||PN|2-|PN|-2=0,解得|PN|=,
          所以|PN|=
          因為雙曲線的離心率e==2,直線l:x=是雙曲線的右準線,故=e=2,
          所以d=|PN|,因此
          解法二:
          設(shè)P(x,y),因|PN|≥1知
          |PM|=2|PN|2≥PN|>|PN|,
          故P在雙曲線右支上,所以x≥由雙曲線方程有y2=3x2-3.
          因此,
          從而由|PM|=2|PN|2
          2x+1=2(4x2-4x+1),即8x2-10x+1=0.
          所以x=(舍去).
          有|PM|=2x+1=
          d=x-=

          點評:本小題主要考查雙曲線的第一定義、第二定義,及轉(zhuǎn)化與化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,同時考查了學(xué)生的運算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,M(-2,0)和N(2,0)是平面上的兩點,動點P滿足:|PM|+|PN|=6.
          (Ⅰ)求點P的軌跡方程;
          (Ⅱ)若|PM|•|PN|=
          21-cos∠MPN
          ,求點P的坐標.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,M(-2,0)和N(2,0)是平面上的兩點,動點P滿足:||PM|-|PN||=2.
          (Ⅰ)求點P的軌跡方程;
          (Ⅱ)設(shè)d為點P到直線l:x=
          1
          2
          的距離,若|PM|=2|PN|2,求
          |PM|
          d
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:重慶市高考真題 題型:解答題

          如圖,M(-2,0)和N(2,0)是平面上的兩點,動點P滿足:|PM|+|PN|=6,
          (Ⅰ)求點P的軌跡方程;
          (Ⅱ)若|PM|·|PN|=,求點P的坐標。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,M(-2,0)和N(2,0)是平面上的兩點,動點P滿足:

                                       

          (Ⅰ)求點P的軌跡方程;

          (Ⅱ)設(shè)d為點P到直線l: 的距離,若,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008年重慶市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,M(-2,0)和N(2,0)是平面上的兩點,動點P滿足:|PM|+|PN|=6.
          (Ⅰ)求點P的軌跡方程;
          (Ⅱ)若,求點P的坐標.

          查看答案和解析>>

          同步練習(xí)冊答案