日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若P是等邊三角形ABC所在平面外一點,PA=PB=PC=
          2
          3
          ,△ABC的邊長為1,則PC和平面ABC所成的角是(  )
          分析:取AB中點D,連接PD、CD,可證明出平面PCD⊥平面ABC,從而得到∠PCD是直線PC和平面ABC所成的角.在△PCD中,算出PD、CD的長,用余弦定理算出cos∠PCD的值,從而得到∠PCD的度數(shù),即為PC和平面ABC所成的角.
          解答:解:取AB中點D,連接PD、CD,
          ∵PA=PB,D為AB中點,∴PD⊥AB,同理可得CD⊥AB
          ∵PD、CD是平面PCD內(nèi)的相交直線
          ∴AB⊥平面PCD
          ∵AB?平面ABC,∴平面PCD⊥平面ABC,
          由此可得直線PC在平面ABC內(nèi)的射影是直線CD,
          ∴∠PCD是直線PC和平面ABC所成的角
          ∵△PAB中,PA=PB=
          2
          3
          ,AB=1
          ∴PD=
          PA2-(
          1
          2
          AB)2
          =
          7
          6

          又∵正△ABC中,CD=
          3
          2
          AB=
          3
          2

          ∴△PCD中,cos∠PCD=
          PC2+CD2-PD2
          2PC×CD
          =
          3
          2

          結(jié)合∠PCD是小于180°的正角,可得∠PCD=30°
          即PC和平面ABC所成的角等于30°
          故選:A
          點評:本題在正三棱錐中求側(cè)棱與底面所成角的大小,著重考查了線面垂直、面面垂直的證明和直線與平面所成角大小的求法等知識,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
          (1)證明:AB⊥PC;
          (2)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          三棱錐P-ABC中,三角形PAB是等邊三角形,∠PAC=∠PBC=90°
          (Ⅰ)證明:AB⊥PC
          (Ⅱ)若三角形ABC是邊長為2
          2
          的正三角形,(1)求證:面PAC⊥面PBC;(2)求三棱錐P-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,三棱錐P-ABC中,PA⊥平面ABC,△ABC是等邊三角形,E是BC中點,若PA=AB,則異面直線PE與AB所成角的余弦值( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線l1:x-y=0,l2:x+y=0,點P是線性約束條件
          x-y≥0
          x+y≥0
          所表示區(qū)域內(nèi)一動點,PM⊥l1,PN⊥l2,垂足分別為M、N,且S△OMN=
          1
          2
          (O為坐標(biāo)原點).
          (Ⅰ)求動點P的軌跡方程;
          (Ⅱ)是否存在過點(2,0)的直線l與(Ⅰ)中軌跡交于點A、B,線段AB的垂直平分線交y軸于Q點,且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐P-ABC中,△PAB是等邊三角形,D,E分別為AB,PC的中點.
          (1)在BC邊上是否存在一點F,使得PB∥平面DEF.
          (2)若∠PAC=∠PBC=90°,證明:AB⊥PC;
          (3)在(2)的條件下,若AB=2,AC=
          5
          ,求三棱錐P-ABC的體積.

          查看答案和解析>>