日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知是等比數(shù)列的前項和,、、成等差數(shù)列,且.
          (1)求數(shù)列的通項公式;
          (2)是否存在正整數(shù),使得?若存在,求出符合條件的所有的集合;若不存在,說明理由.

          (1);(2)存在符合條件的正整數(shù)的集合為.

          解析試題分析:(1)設(shè)數(shù)列的公比為,依題意,列出關(guān)于首項與公比的方程組,解之即可求得數(shù)列的通項公式;(2)依題意,可得,對的奇偶性進行分類討論,即可求得答案.
          試題解析:(1)解:設(shè)數(shù)列的公比為,則,
          由題意得解得
          故數(shù)列的通項公式為                  6分
          (2)由(1)有                                    7分
          若存在,使得,則,即                      8分
          為偶數(shù)時,,上式不成立                                            9分
          為奇數(shù)時,,即,則                          11分
          綜上,存在符合條件的正整數(shù)的集合為                    12分.
          考點:1.等比數(shù)列;2.等差數(shù)列;3.數(shù)列的求和.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知數(shù)列的各項均滿足,
          (1)求數(shù)列的通項公式;
          (2)設(shè)數(shù)列的通項公式是,前項和為
          求證:對于任意的正數(shù),總有.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知數(shù)列{an}是等差數(shù)列,a2=6,a5=12,數(shù)列{bn}的前n項和是Sn,且Sn+bn=1.
          (1)求數(shù)列{an}的通項公式.
          (2)求證:數(shù)列{bn}是等比數(shù)列.
          (3)記cn=,{cn}的前n項和為Tn,若Tn<對一切n∈N*都成立,求最小正整數(shù)m.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知數(shù)列{an}和{bn}滿足:a1λ,an+1ann-4,bn=(-1)n(an-3n+21),其中λ為實數(shù),n為正整數(shù).
          (1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
          (2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知等比數(shù)列項和為,且滿足,
          (Ⅰ)求數(shù)列的通項公式;
          (Ⅱ)求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          設(shè)正項數(shù)列an為等比數(shù)列,它的前n項和為Sn,a1=1,且.
          (Ⅰ)求數(shù)列的通項公式;
          (Ⅱ)已知是首項為1,公差為2的等差數(shù)列,求數(shù)列的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知等比數(shù)列的公比為,的前項和.
          (1)若,,求的值;
          (2)若,有無最值?并說明理由;
          (3)設(shè),若首項都是正整數(shù),滿足不等式:,且對于任意正整數(shù)成立,問:這樣的數(shù)列有幾個?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),設(shè)曲線在點處的切線與軸的交點為,其中為正實數(shù).
          (1)用表示;
          (2),若,試證明數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;
          (3)若數(shù)列的前項和,記數(shù)列的前項和,求

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知等比數(shù)列中,,,等差數(shù)列中,,且
          ⑴求數(shù)列的通項公式;
          ⑵求數(shù)列的前項和

          查看答案和解析>>

          同步練習冊答案