【題目】已知橢圓的離心率為
,過點
的直線
與
有兩個不同的交點
,線段
的中點為
,
為坐標原點,直線
與直線
分別交直線
于點
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求線段的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】某地自2014年至2019年每年年初統(tǒng)計所得的人口數(shù)量如表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人數(shù)(單位:千人) | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)根據(jù)表中的數(shù)據(jù)判斷從2014年到2019年哪個跨年度的人口增長數(shù)量最大?并描述該地人口數(shù)量的變化趨勢;
(2)研究人員用函數(shù)擬合該地的人口數(shù)量,其中
的單位是年,2014年年初對應時刻
,
的單位是千人,經(jīng)計算可得
,請解釋
的實際意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計圖.
(1)根據(jù)條形統(tǒng)計圖,估計本屆高三學生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.
(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知單調遞增的等比數(shù)列滿足:
.且
是
,
的等差中項.又數(shù)列
滿足:
,
,
.
(1)求數(shù)列的通項公式;
(2)若,且數(shù)列
為等比數(shù)列,求
的值;
(3)若,且
為數(shù)列
的最小項,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】德國著名數(shù)學家狄利克雷(Dirichlet,1805~1859)在數(shù)學領域成就顯著.19世紀,狄利克雷定義了一個“奇怪的函數(shù)” 其中R為實數(shù)集,Q為有理數(shù)集.則關于函數(shù)
有如下四個命題,正確的為( )
A.函數(shù)是偶函數(shù)
B.,
,
恒成立
C.任取一個不為零的有理數(shù)T,對任意的
恒成立
D.不存在三個點,
,
,使得
為等腰直角三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學參加一項射擊比賽游戲,其中任何一人每射擊一次擊中目標得2分,未擊中目標得0分.若甲、乙兩人射擊的命中率分別為和
,且甲、乙兩人各射擊一次得分之和為2的概率為
.假設甲、乙兩人射擊互不影響,則
值為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于正整數(shù),如果
個整數(shù)
滿足
,
且,則稱數(shù)組
為
的一個“正整數(shù)分拆”.記
均為偶數(shù)的“正整數(shù)分拆”的個數(shù)為
均為奇數(shù)的“正整數(shù)分拆”的個數(shù)為
.
(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;
(Ⅱ)對于給定的整數(shù),設
是
的一個“正整數(shù)分拆”,且
,求
的最大值;
(Ⅲ)對所有的正整數(shù),證明:
;并求出使得等號成立的
的值.
(注:對于的兩個“正整數(shù)分拆”
與
,當且僅當
且
時,稱這兩個“正整數(shù)分拆”是相同的.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com