日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線上一點到其焦點下的距離為10.

          (1)求拋物線C的方程;

          (2)設(shè)過焦點F的的直線與拋物線C交于兩點,且拋物線在兩點處的切線分別交x軸于兩點,求的取值范圍.

          【答案】(Ⅰ)(Ⅱ)

          【解析】

          (Ⅰ)由拋物線的定義,可得到,即可求出,從而得到拋物線的方程;(Ⅱ)直線的斜率一定存在,可設(shè)斜率為,直線,設(shè),由可得,,然后對求導(dǎo),可得到的斜率及方程表達式,進而可表示出,同理可得到的表達式,然后對化簡可求出范圍。

          解:(Ⅰ)已知到焦點的距離為10,則點到準(zhǔn)線的距離為10.

          ∵拋物線的準(zhǔn)線為,∴,

          解得,∴拋物線的方程為.

          (Ⅱ)由已知可判斷直線的斜率存在,設(shè)斜率為,因為,則.

          設(shè),,由消去得,

          ,.

          由于拋物線也是函數(shù)的圖象,且,則.

          ,解得,∴,從而.

          同理可得,,

          .

          ,∴的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為培養(yǎng)學(xué)生的閱讀習(xí)慣,某校開展了為期一年的“弘揚傳統(tǒng)文化,閱讀經(jīng)典名著”活動. 活動后,為了解閱讀情況,學(xué)校統(tǒng)計了甲、乙兩組各10名學(xué)生的閱讀量(單位:本),統(tǒng)計結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以a表示.

          (Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;

          (Ⅱ)將甲、乙兩組中閱讀量超過15本的學(xué)生稱為“閱讀達人”. 設(shè),現(xiàn)從所有的“閱讀達人”里任取2人,求至少有1人來自甲組的概率;

          (Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學(xué)生,并記新得到的甲組閱讀量的方差為,試比較,的大小.(結(jié)論不要求證明)

          (注:,其中為數(shù)據(jù)的平均數(shù))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司租賃甲、乙兩種設(shè)備生產(chǎn)、兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件,乙種設(shè)備每天能生產(chǎn)類產(chǎn)品件和類產(chǎn)品件.已知設(shè)備甲每天的租賃費為元,設(shè)備乙每天的租賃費為元,現(xiàn)該公司至少要生產(chǎn)類產(chǎn)品件,類產(chǎn)品件,求所需租賃費最少為多少元?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1

          年份x

          2011

          2012

          2013

          2014

          2015

          儲蓄存款y(千億元)

          5

          6

          7

          8

          10

          為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2

          時間代號t

          1

          2

          3

          4

          5

          z

          0

          1

          2

          3

          5

          (Ⅰ)求z關(guān)于t的線性回歸方程;

          (Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達多少?

          (附:對于線性回歸方程,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABCA1B1C1中,點DE、F分別為線段A1C1AB、A1A的中點,A1AACBC,∠ACB90°.求證:

          1DE∥平面BCC1B1;

          2EF⊥平面B1CE

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)給出下列4個命題:①當(dāng)且僅當(dāng)時,是偶函數(shù);②函數(shù)一定存在零點;③函數(shù)在區(qū)間上單調(diào)遞減;④當(dāng)時,函數(shù)的最小值為,那么所有真命題的序號是_______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)列中,.從數(shù)列中選出項并按原順序組成的新數(shù)列記為,并稱為數(shù)列項子列.例如數(shù)列、、的一個項子列.

          1)試寫出數(shù)列的一個項子列,并使其為等差數(shù)列;

          2)如果為數(shù)列的一個項子列,且為等差數(shù)列,證明:的公差滿足

          3)如果為數(shù)列的一個項子列,且為等比數(shù)列,證明:

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓,左、右焦點分別是,為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點

          1)求橢圓的方程;

          2)設(shè)橢圓,為橢圓上任意一點,過點的直線交橢圓兩點,射線交橢圓于點

          ①求的值;

          ②令,的面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)點、的坐標(biāo)分別為,動點P滿足,設(shè)動點P的軌跡為,以動點P到點距離的最大值為長軸,以點為左、右焦點的橢圓為,則曲線和曲線的交點到軸的距離為_________.

          查看答案和解析>>

          同步練習(xí)冊答案