【題目】已知橢圓,P是橢圓的上頂點(diǎn),過點(diǎn)P作斜率為
的直線l交橢圓于另一點(diǎn)A,設(shè)點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為B
(1)求面積的最大值;
(2)設(shè)線段PB的中垂線與y軸交于點(diǎn)N,若點(diǎn)N在橢圓內(nèi)部,求斜率k的取值范圍.
【答案】(1)2;(2)
【解析】
(1)根據(jù)題意可知,故當(dāng)
在左右頂點(diǎn)的時(shí)候面積最大.
(2)設(shè)的方程,聯(lián)立與橢圓的方程,求出
的坐標(biāo),再得出
的坐標(biāo),進(jìn)而求得
的中垂線,再求得
的坐標(biāo),根據(jù)點(diǎn)N在橢圓內(nèi)部得到不等式求解即可.
(1)設(shè)點(diǎn),
,
.
根據(jù)題意可知.
故當(dāng)時(shí)
面積取最大值2.
(2) 設(shè)直線的方程:
.聯(lián)立直線與橢圓的方程有
,整理可得:
,因?yàn)?/span>
,故
.代入
可得
.
所以,
.
故中點(diǎn)坐標(biāo)為
.
又的斜率為
.故
中垂線的斜率為
.
中垂線的方程為:
.代入
有
.
故.又點(diǎn)
在橢圓內(nèi)部.故
,解得
,
即.又
,故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為4.且過點(diǎn)
.
(1)求橢圓E的方程;
(2)設(shè),
,
,過B點(diǎn)且斜率為
的直線l交橢圓E于另一點(diǎn)M,交x軸于點(diǎn)Q,直線AM與直線
相交于點(diǎn)P.證明:
(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是
上的奇函數(shù),其中
,則下 列關(guān)于函數(shù)
的描述中,其中正確的是( )
①將函數(shù)的圖象向右平移
個(gè)單位可以得到函數(shù)
的圖象;
②函數(shù)圖象的一條對稱軸方程為
;
③當(dāng)時(shí),函數(shù)
的最小值為
;
④函數(shù)在
上單調(diào)遞增.
A.①③B.③④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=aex﹣x,
(1)求f(x)的單調(diào)區(qū)間,
(2)若關(guān)于x不等式aex≥x+b對任意和正數(shù)b恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為
,上頂點(diǎn)為
,離心率為
, 在
軸負(fù)半軸上有一點(diǎn)
,且
(1)若過三點(diǎn)的圓 恰好與直線
相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)作斜率為
的直線
與橢圓C交于
兩點(diǎn),在
軸上是否存在點(diǎn)
,使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
分別是橢圓
的左,右焦點(diǎn),
兩點(diǎn)分別是橢圓
的上,下頂點(diǎn),
是等腰直角三角形,延長
交橢圓
于
點(diǎn),且
的周長為
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓
上異于
的動(dòng)點(diǎn),直線
與直
分別相交于
兩點(diǎn),點(diǎn)
,求證:
的外接圓恒過原點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為
,準(zhǔn)線
與
軸交于點(diǎn)
,過點(diǎn)
的直線交拋物線于
,
兩點(diǎn),點(diǎn)
在第一象限.
若
,
,求直線
的方程;
若
,點(diǎn)
為準(zhǔn)線
上任意一點(diǎn),求證:直線
,
,
的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物研究所為研發(fā)一種新疫苗,在200只小白鼠身上進(jìn)行科研對比實(shí)驗(yàn),得到如下統(tǒng)計(jì)數(shù)據(jù):
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 30 | ||
注射疫苗 | 70 | ||
總計(jì) | 100 | 100 | 200 |
現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.
(Ⅰ)能否有的把握認(rèn)為注射此種疫苗有效?
(Ⅱ)在未注射疫苗且未感染病毒與注射疫苗且感染病毒的小白鼠中,分別抽取3只進(jìn)行病例分析,然后從這6只小白鼠中隨機(jī)抽取2只對注射疫苗情況進(jìn)行核實(shí),求抽到的2只均是注射疫苗且感染病毒的小白鼠的概率.
附:,
,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某植物園內(nèi)有一塊圓形區(qū)域,在其內(nèi)接四邊形內(nèi)種植了兩種花卉,其中
區(qū)域內(nèi)種植蘭花,
區(qū)域內(nèi)種植丁香花,對角線BD是一條觀賞小道.測量可知邊界
,
,
.
(1)求觀賞小道BD的長及種植區(qū)域的面積;
(2)因地理?xiàng)l件限制,種植丁香花的邊界BC,CD不能變更,而邊界AB,AD可以調(diào)整,使得種植蘭花的面積有所增加,請?jiān)?/span>BAD上設(shè)計(jì)一點(diǎn)P,使得種植區(qū)域改造后的新區(qū)域(四邊形)的面積最大,并求出這個(gè)面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com