日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)
          如圖,在四棱錐中,底面是矩形,平面,,
          是線段上的點,是線段上的點,且

          (Ⅰ)當(dāng)時,證明平面;
          (Ⅱ)是否存在實數(shù),使異面直線所成的角為?若存在,試求出的值;若不存在,請說明理由.
          (Ⅰ)見解析;(Ⅱ)存在實數(shù)使異面直線所成的角為
          (1)當(dāng)時,分別是所在邊的中點,在矩形中,利用三角形相似證出,由已知得,根據(jù)線面垂直的判定定理可證出結(jié)論.(2)異面直線所成的角為,即,在直角三角形中,.設(shè),再求出,.由余弦定理求得.代入求出的值.
          (Ⅰ)當(dāng)時,則的中點.
           ,
          ∴在中,
          ,,∴.
          又∵平面,平面
          .
          平面          ………………………………………………………… (6分)
          (Ⅱ)設(shè), 則.連結(jié),則.
          .
          ,∴,.
          中,,
          設(shè)異面直線所成的角為,則,
          , ∴.
          .
          解得.
          ∴存在實數(shù),使異面直線所成的角為. ……………………………… (12分)
          方法二:(坐標(biāo)法)
          為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系.

          (Ⅰ)當(dāng)時,則的中點,設(shè), 則,則
          ,,,,.
          ,.
          ,.
          平面.     ………………………………………………………………………(6分)
          (Ⅱ)設(shè), 則,
          ,,.
          ,
          , .
          ,.

          依題意,有,
          ,∴ ∴.
          ∴存在實數(shù)使異面直線所成的角為.   ……………………………… (12分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,PA=AB=4,
           
          G為PD中點,E點在AB上,平面PEC⊥平面PDC.
          (Ⅰ)求證:AG⊥平面PCD;
          (Ⅱ)求證:AG∥平面PEC;
          (Ⅲ)求點G到平面PEC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          如圖所示, 四棱錐PABCD的底面是邊長為1的正方形,PA^CDPA = 1, PD=,EPD上一點,PE = 2ED

          (Ⅰ)求證:PA^平面ABCD;
          (Ⅱ)求二面角D-ACE的余弦值;
          (Ⅲ)在側(cè)棱PC上是否存在一點F,使得BF // 平面AEC?若存在,指出F點的位置,并證明;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          在直三棱柱中,中點.

          (1)求證://平面
          (2)求點到平面的距離;
          (3)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱椎P-ABCD中,底面ABCD是邊長為的正方形,且PD=,PA=PC=.

          (1)求證:直線PD⊥面ABCD;
          (2)求二面角A-PB-D的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐中,平面平面,,、分別是、的中點。
          求證:(Ⅰ)直線平面;
          (Ⅱ)平面平面。(12分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,M是正方體的棱的中點,給出命題

          ①過M點有且只有一條直線與直線都相交;
          ②過M點有且只有一條直線與直線、都垂直;
          ③過M點有且只有一個平面與直線、都相交;
          ④過M點有且只有一個平面與直線、都平行.
          其中真命題是(   )
          A.②③④B.①③④C.①②④D.①②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示的七面體是由三棱臺ABC – A1B1C1和四棱錐D- AA1C1C對接而成,四邊形ABCD是邊長為2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.

          (I)求證:平面AA1C1C1⊥平面BB1D;
          (Ⅱ)求二面角A –A1D—C1的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          的直徑,點上的動點(點不與重合),過動點的直線垂直于所在的平面,分別是的中點,則下列結(jié)論錯誤的是  
          A.直線平面B.直線平面
          C.D.

          查看答案和解析>>

          同步練習(xí)冊答案