日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】下列命題中正確的是( )

          A. 有兩個面平行,其余各面都是四邊形的幾何體叫棱柱

          B. 有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱

          C. 用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺

          D. 有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱

          【答案】B

          【解析】

          利用棱柱、棱臺、棱錐的概念即可對逐個選項的正誤作出判斷

          在A中,如圖的幾何體,有兩個面平行,其余各面都是四邊形的幾何體不是棱柱,故A錯誤;

          在B中,由棱柱的定義得:

          有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱,故B正確;

          在C中,用一個平行于底面的平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺,故C錯誤;

          在D中,如圖的幾何體,有兩個面平行,其余各面都是平行四邊形的幾何體不是棱柱,故D錯誤.

          故選:B.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在平行六面體中,

          求證:(1)

          (2)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切且被軸截得的弦長為,圓的面積小于13.

          (Ⅰ)求圓的標準方程;

          (Ⅱ)設過點的直線與圓交于不同的兩點,以為鄰邊作平行四邊形.是否存在這樣的直線,使得直線恰好平行?如果存在,求出的方程;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,以x軸正半軸為始邊作銳角α,其終邊與單位圓交于點A.以OA為始邊作銳角β,其終邊與單位圓交于點B,AB=
          (1)求cosβ的值;
          (2)若點A的橫坐標為 ,求點B的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          1)若曲線在點處的切線為 軸的交點坐標為,求的值;

          2)討論的單調性.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,在等腰梯形中,,,點的中點.將沿折起,使點到達的位置,得到如圖所示的四棱錐,點為棱的中點.

          (1)求證:平面;

          (2)若平面平面,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在圓心角為,半徑為的扇形鐵皮上截取一塊矩形材料,其中點為圓心,點在圓弧上,點在兩半徑上,現(xiàn)將此矩形鐵皮卷成一個以為母線的圓柱形鐵皮罐的側面(不計剪裁和拼接損耗),設矩形的邊長,圓柱形鐵皮罐的容積為.

          (1)求圓柱形鐵皮罐的容積關于的函數(shù)解析式,并指出該函數(shù)的定義域;

          (2)當為何值時,才使做出的圓柱形鐵皮罐的容積最大?最大容積是多少? (圓柱體積公式:,為圓柱的底面枳,為圓柱的高)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),.

          (1)問:能否為偶函數(shù)?請說明理由;

          (2)總存在一個區(qū)間,當時,對任意的實數(shù),方程無解,當時,存在實數(shù),方程有解,求區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)= sinxcosx+cos2x,銳角△ABC的三個角A,B,C所對的邊分別為a,b,c. (Ⅰ)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
          (Ⅱ)若f(C)=1,求m= 的取值范圍.

          查看答案和解析>>

          同步練習冊答案