日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在四棱錐中,平面平面,為等邊三角形,,,點(diǎn)的中點(diǎn).

          1)求證:平面;

          2)求二面角的余弦值.

          【答案】(1)證明見解析(2)

          【解析】

          1)取中點(diǎn),連結(jié),,證明四邊形為平行四邊形得到答案.

          2)證明平面,如圖建立空間直角坐標(biāo)系,平面的法向量,面的法向量,計(jì)算夾角得到答案.

          1)取中點(diǎn),連結(jié),.

          因?yàn)?/span>中點(diǎn),所以,.

          因?yàn)?/span>.所以.

          所以四邊形為平行四邊形,所以.

          因?yàn)?/span>平面平面,

          所以平面.

          2)取中點(diǎn),連結(jié).因?yàn)?/span>,所以.

          因?yàn)槠矫?/span>平面,平面平面,平面,

          所以平面,取中點(diǎn),連結(jié),

          .為原點(diǎn),如圖建立空間直角坐標(biāo)系,

          ,則,,,

          .平面的法向量

          設(shè)平面的法向量,由,得.

          ,則.由圖可知,

          二面角是銳二面角,所以二面角的余弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】推進(jìn)垃圾分類處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對(duì)垃圾分類的了解程度某社區(qū)居委會(huì)隨機(jī)抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如表:

          得分

          [30,40

          [4050

          [50,60

          [60,70

          [7080

          [80,90

          [90,100]

          男性人數(shù)

          40

          90

          120

          130

          110

          60

          30

          女性人數(shù)

          20

          50

          80

          110

          100

          40

          20

          1)從該社區(qū)隨機(jī)抽取一名居民參與問卷測試試估計(jì)其得分不低于60分的概率:

          2)將居民對(duì)垃圾分類的了解程度分為“比較了解”(得分不低于60分)和“不太了解”(得分低于60)兩類,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對(duì)垃圾分類的了解程度”與“性別”有關(guān)?

          不太了解

          比較了解

          合計(jì)

          男性

          女性

          合計(jì)

          3)從參與問卷測試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,現(xiàn)從這10人中隨機(jī)抽取3人作為環(huán)保宣傳隊(duì)長,設(shè)3人中男性隊(duì)長的人數(shù)為,求的分布列和期望.

          附:

          臨界值表:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù),區(qū)間A為函數(shù)的一個(gè)可等域區(qū)間”.給出下列四個(gè)函數(shù):①;②;③;④.其中存在唯一可等域區(qū)間可等域函數(shù)的個(gè)數(shù)是( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三棱錐中,平面平面, 則三棱錐的外接球的表面積為__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,已知ABCD為梯形,AB∥CD,CD=2AB,M為線段PC上一點(diǎn).

          (1)設(shè)平面PAB∩平面PDC=l,證明:AB∥l

          (2)在棱PC上是否存在點(diǎn)M,使得PA∥平面MBD,若存在,請(qǐng)確定點(diǎn)M的位置若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形周長為

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且以為直徑的圓過橢圓的右頂點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市堅(jiān)持農(nóng)業(yè)與旅游融合發(fā)展,著力做好旅游各要素,完善旅游業(yè)態(tài),提升旅游接待能力.為了給游客提供更好的服務(wù),旅游部門需要了解游客人數(shù)的變化規(guī)律,收集并整理了月至月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了如圖所示的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是(

          A.月接待游客量逐月增加

          B.年接待游客量逐年增加

          C.各年的月接待游客量高峰期大致在7,8

          D.各年1月至6月的月接待游客量相對(duì)于7月至12月,波動(dòng)性更小,變化比較平穩(wěn)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有(

          A.12B.24C.36D.48

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的定義域?yàn)?/span>,若存在區(qū)間使得

          (Ⅰ)上是單調(diào)函數(shù);

          (Ⅱ)上的值域是,

          則稱區(qū)間為函數(shù)倍值區(qū)間

          下列函數(shù)中存在倍值區(qū)間的有______________(填上所有你認(rèn)為正確的序號(hào))

          ; ;

          ;

          查看答案和解析>>

          同步練習(xí)冊(cè)答案