日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},當BA時,求實數(shù)m的取值范圍.

          解:當B=時,2m-1>m+1,得m>2,滿足BA,

          當B≠時,則有得-1≤m≤2.

          綜上可知,滿足條件的實數(shù)m的取值范圍是m≥-1.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          對于定義在D上的函數(shù)y=f(x),若同時滿足.
          ①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
          ②對于D內任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
          (1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
          (文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
          (2)(理)設f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
          (文)設f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
          (3)(理)若F(x)=mx+
          x2+2x+n
          ,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
          (文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知f(x)=ax2+2bx+4c(a,b,c∈R)
          (1)若a+c=0,f(x)在[-2,2]上的最大值為
          2
          3
          ,最小值為-
          1
          2
          ,求證:|
          b
          a
          |≤2

          (2)當b=4,c=
          3
          4
          時,對于給定的負數(shù)a,有一個最大的正數(shù)m(a),使得x∈[0,m(a)]時都有|f(x)|≤5,問a為何值時,m(a)最大,并求這個最大值m(a),證明你的結論.
          (3)若f(x)同時滿足下列條件:①a>0;②當|x|≤2時,有|f(x)|≤2;③當|x|≤1時,f(x)最大值為2,求f(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=x2+ax-lnx,a∈R.
          (Ⅰ)若a=1,求曲線f(x)在點(1,f(1))處的切線方程;
          (Ⅱ)令g(x)=f(x)-x2,是否存在實數(shù)a,當x∈(0,e](e是自然常數(shù))時,函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由;
          (Ⅲ)當x∈(0,e]時,證明:e2x2-
          52
          x>(x+1)lnx

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知集合A={x|3≤x≤6},B={x|2<x<9}.
          (1)分別求?R(A∩B),(?RB)∩A
          (2)已知C={x|a<x<a+1},若C⊆B,求實數(shù)a的取值集合.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知集合A={x|3≤x<6},B={x|2<x<9}.
          (1)求:CR(A∩B);
          (2)已知C={x|a<x<a+1},若C⊆B,求實數(shù)a的取值集合.

          查看答案和解析>>

          同步練習冊答案