日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.

          (1)求g(x)的解析式;

          (2)設函數(shù)G(x)=若方程G(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.

          【答案】(1)g(x)=x2-lnx(2)

          【解析】(1)g(x)=2bx+ 由條件b,c=-1

          g(x)=x2-lnx.

          (2)G(x)=

          當x>0時,G(x)=g(x)=x2-lnx,g(x)=x-.

          令g(x)=0,得x=1且當x∈(0,1),g(x)<0,x(1,+∞),g(x)>0,

          g(x)在(0,+∞)上有極小值,即最小值為g(1)=.

          當x≤0時G(x)=f(x)=ax3-3ax,f(x)=3ax23a3a(x+1)(x-1).

          令f(x)=0,得x=-1.若a=0,方程G(x)=a2不可能有四個解;

          若a<0時,當x∈(-∞-1),f(x)<0,當x∈(-1,0),f(x)>0,f(x)在(-,0]上有極小值即最小值為f(-1)=2a.又f(0)=0,G(x)的圖象如圖①所示,從圖象可以看出方程G(x)=a2不可能有四個解;

          ,①)  ,)

          若a>0時,當x∈(-∞,-1)f(x)>0,當x∈(-1,0),f(x)<0,f(x)在(-∞,0]上有極大值即最大值為f(-1)=2a.又f(0)=0,G(x)的圖象如圖②所示.從圖象可以看出方程G(x)=a2若有四個解,必須<a22a,<a<2.綜上所述,滿足條件的實數(shù)a的取值范圍是

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示, 是海面上一條南北方向的海防警戒線,在 上點 處有一個水聲監(jiān)測點,另兩個監(jiān)測點 分別在 的正東方向 處和 處.某時刻,監(jiān)測點 收到發(fā)自目標 的一個聲波, 后監(jiān)測點 后監(jiān)測點 相繼收到這一信號,在當時的氣象條件下,聲波在水中的傳播速度是

          (1)設 的距離為 ,用 分別表示 的距離,并求 的值;

          (2)求目標 的海防警戒線 的距離(精確到 ).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù),且)是定義域為R的奇函數(shù).

          1)求t的值;

          2)若,求使不等式對一切恒成立的實數(shù)k的取值范圍;

          3)若函數(shù)的圖象過點,是否存在正數(shù)m),使函數(shù)上的最大值為0,若存在,求出m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】山東省于2015年設立了水下考古研究中心,以此推動全省的水下考古、水下文化遺產(chǎn)保護等工作;水下考古研究中心工作站,分別設在位于劉公島的中國甲午戰(zhàn)爭博物院和威海市博物館。為對劉公島周邊海域水底情況進行詳細了解,然后再選擇合適的時機下水探摸、打撈,省水下考古中心在一次水下考古活動中,某一潛水員需潛水米到水底進行考古作業(yè),其用氧量包含以下三個方面:

          ①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

          ②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.4升;

          ③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升.

          潛水員在此次考古活動中的總用氧量為升.

          (Ⅰ)如果水底作業(yè)時間是分鐘,將表示為的函數(shù);

          (Ⅱ)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,棱長為1的正方體中,點P是線段上的動點.當在平面,平面,平面ABCD上的正投影都為三角形時,將它們的面積分別記為,,

          1)當時,________(用“=”填空);

          2的最大值為________

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)當時,求函數(shù)的圖像在出的切線方程;

          (2)判斷函數(shù)的單調(diào)性;

          (3)證明:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】從某網(wǎng)站的程序員中隨機抽取名統(tǒng)計其年齡數(shù)據(jù)如下表:

          年齡

          23

          26

          27

          30

          32

          34

          38

          人數(shù)

          1

          3

          3

          5

          4

          3

          1

          1)求這名程序員的平均年齡及年齡的眾數(shù)、中位數(shù);

          2)若這名程序員中年齡不超過歲,且學歷是研究生及其以上有人,歲以上且學歷是本科及其以下有人,完成下面的列聯(lián)表,并判斷是否有%的把握認為該網(wǎng)站程序員的學歷與年齡有關(guān).

          年齡≤30

          年齡>30

          學歷研究生及其以上

          學歷本科及其以下

          附:

          0.15

          0.10

          0.05

          0.025

          0.01

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          .

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知點P是拋物線C:上任意一點,過點P作直線PH⊥x軸,點H為垂足.點M是直線PH上一點,且在拋物線的內(nèi)部,直線l過點M交拋物線C于A、B兩點,且點M是線段AB的中點.

          (1)證明:直線l平行于拋物線C在點P處切線;

          (2)若|PM|=, 當點P在拋物線C上運動時,△PAB的面積如何變化?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,橢圓的左焦點為,過點的直線交橢圓于,兩點,的最大值是,的最小值是,且滿足.

          (1)求橢圓的離心率;

          (2)設線段的中點為,線段的垂直平分線與軸、軸分別交于,兩點,是坐標原點,記的面積為,的面積為,求的取值范圍.

          查看答案和解析>>

          同步練習冊答案