已知橢圓(
)右頂點(diǎn)到右焦點(diǎn)的距離為
,短軸長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點(diǎn)的直線與橢圓分別交于
、
兩點(diǎn),若線段
的長為
,求直線
的方程.
(Ⅰ);(Ⅱ)
或
.
解析試題分析:(Ⅰ)由題意列關(guān)于a、b、c的方程組,解方程得a、b、c的值,既得橢圓的方程;(Ⅱ)分兩種情況討論:當(dāng)直線與
軸垂直時(shí),
,此時(shí)
不符合題意故舍掉;當(dāng)直線
與
軸不垂直時(shí),設(shè)直線
的方程為:
,代入橢圓方程消去
得:
,再由韋達(dá)定理得
,從而可得直線的方程.
試題解析:(Ⅰ)由題意,,解得
,即:橢圓方程為
4分
(Ⅱ)當(dāng)直線與
軸垂直時(shí),
,此時(shí)
不符合題意故舍掉; 6分
當(dāng)直線與
軸不垂直時(shí),設(shè)直線
的方程為:
,
代入消去得:
.
設(shè) ,則
8分
所以 , 11分
由, 13分
所以直線或
. 14分
考點(diǎn):1、橢圓的方程;2、直線被圓錐曲線所截弦長的求法;3、韋達(dá)定理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖已知橢圓的中點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,長軸是短軸的2倍且過點(diǎn),平行于
的直線
在y軸的截距為
,且交橢圓與
兩點(diǎn),
(1)求橢圓的方程;(2)求的取值范圍;(3)求證:直線
、
與x軸圍成一個(gè)等腰三角形,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線M: 的準(zhǔn)線過橢圓N:
的左焦點(diǎn),以坐標(biāo)原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點(diǎn)A與點(diǎn)B,直線AB與x軸相交于點(diǎn)C.
(1)求拋物線M的方程.
(2)設(shè)點(diǎn)A的橫坐標(biāo)為x1,點(diǎn)C的橫坐標(biāo)為x2,曲線M上點(diǎn)D的橫坐標(biāo)為x1+2,求直線CD的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓方程為
,過右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為
.
(1)求橢圓方程.
(2)已知為橢圓的左右兩個(gè)頂點(diǎn),
為橢圓在第一象限內(nèi)的一點(diǎn),
為過點(diǎn)
且垂直
軸的直線,點(diǎn)
為直線
與直線
的交點(diǎn),點(diǎn)
為以
為直徑的圓與直線
的一個(gè)交點(diǎn),求證:
三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,點(diǎn)
到兩點(diǎn)
的距離之和等于4,設(shè)點(diǎn)
的軌跡為
,直線
與
交于
兩點(diǎn).
(1)寫出的方程;
(2) ,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,
、
分別是橢圓
的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于
、
兩點(diǎn),其中
在第一象限.過
作
軸的垂線,垂足為
.連接
,并延長交橢圓于點(diǎn)
.設(shè)直線
的斜率為
.
(Ⅰ)當(dāng)直線平分線段
時(shí),求
的值;
(Ⅱ)當(dāng)時(shí),求點(diǎn)
到直線
的距離;
(Ⅲ)對任意,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過拋物線的對稱軸上任一點(diǎn)
作直線與拋物線交于
、
兩點(diǎn),點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn).
(1)設(shè),證明:
;
(2)設(shè)直線AB的方程是,過
、
兩點(diǎn)的圓C與拋物線在點(diǎn)A處有共同的切線,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)、
,若動點(diǎn)
滿足
.
(1)求動點(diǎn)的軌跡曲線
的方程;
(2)在曲線上求一點(diǎn)
,使點(diǎn)
到直線:
的距離最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)
的動直線
,與橢圓
:
(
)相交于
,
兩點(diǎn). 當(dāng)
軸時(shí),
,當(dāng)
軸時(shí),
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若的中點(diǎn)為
,且
,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com