已知橢圓方程為
,過右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為
.
(1)求橢圓方程.
(2)已知為橢圓的左右兩個(gè)頂點(diǎn),
為橢圓在第一象限內(nèi)的一點(diǎn),
為過點(diǎn)
且垂直
軸的直線,點(diǎn)
為直線
與直線
的交點(diǎn),點(diǎn)
為以
為直徑的圓與直線
的一個(gè)交點(diǎn),求證:
三點(diǎn)共線.
(1);(2)詳見解析.
解析試題分析:(1)由過右焦點(diǎn)斜率為1的直線到原點(diǎn)的距離為可以得到右焦點(diǎn)坐標(biāo),即
的值.再由公式
可得橢圓方程.此處注意因?yàn)槭怯医裹c(diǎn),即焦點(diǎn)在
軸上,從而得到
對(duì)應(yīng)的分母1即為
;(2)由
點(diǎn)坐標(biāo)設(shè)出直線
的點(diǎn)斜式方程,聯(lián)立橢圓方程求出
的坐標(biāo).易知直線
的方程,所以易求得
點(diǎn)坐標(biāo),由圓的性質(zhì)知
,則只要
就有直線
、
重合,即
三點(diǎn)共線.因?yàn)辄c(diǎn)的坐標(biāo)已求得,
可通過向量數(shù)量積予以證明.注意本題如選擇求
點(diǎn)坐標(biāo)則將較為繁瑣,增加了解題的計(jì)算量,這里合理利用圓的直徑對(duì)應(yīng)的圓周角是直角這一性質(zhì),簡(jiǎn)化了運(yùn)算.
試題解析:(1)設(shè)右焦點(diǎn)為,則過右焦點(diǎn)斜率為1的直線方程為:
1分
則原點(diǎn)到直線的距離 3分
方程
4分
(2)點(diǎn)坐標(biāo)為
5分
設(shè)直線方程為:
,設(shè)點(diǎn)
坐標(biāo)為
得:
6分
7分
9分
10分
由圓的性質(zhì)得:
又點(diǎn)的橫坐標(biāo)為
點(diǎn)的坐標(biāo)為
11分
11分
13分
即,又
三點(diǎn)共線 14分
考點(diǎn):1.直線與圓錐曲線的位置關(guān)系;2.直線的方程;3.平面向量的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線的焦點(diǎn)為
,準(zhǔn)線為
,
,以
為圓心的圓
與
相切于點(diǎn)
,
的縱坐標(biāo)為
,
是圓
與
軸除
外的另一個(gè)交點(diǎn).
(I)求拋物線與圓
的方程;
( II)已知直線,
與
交于
兩點(diǎn),
與
交于點(diǎn)
,且
, 求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
,
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)的直線
與橢圓
交于不同的兩點(diǎn)
,且
為銳角(
為坐標(biāo)原點(diǎn)),求直線
的斜率
的取值范圍;
(3)過原點(diǎn)任意作兩條互相垂直的直線與橢圓
:
相交于
四點(diǎn),設(shè)原點(diǎn)
到四邊形
的一邊距離為
,試求
時(shí)
滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓
的右焦點(diǎn),圓
與
軸交于
兩點(diǎn),
是橢圓
與圓
的一個(gè)交點(diǎn),且
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點(diǎn)與圓
相切的直線
與
的另一交點(diǎn)為
,且
的面積為
,求橢圓
的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點(diǎn)為圓心、以橢圓
的短半軸長(zhǎng)為半徑的圓
相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為
,右焦點(diǎn)為
,直線
過點(diǎn)
,且垂直于橢圓的長(zhǎng)軸,動(dòng)直線
垂直于
,垂足為點(diǎn)
,線段
的垂直平分線交
于點(diǎn)
,求點(diǎn)
的軌跡
的方程;
(3)設(shè)與
軸交于點(diǎn)
,不同的兩點(diǎn)
在
上(
與
也不重合),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為
,且過點(diǎn)
.
(1)求橢圓的方程;
(2)若過點(diǎn)C(-1,0)且斜率為的直線
與橢圓相交于不同的兩點(diǎn)
,試問在
軸上是否存在點(diǎn)
,使
是與
無關(guān)的常數(shù)?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓(
)右頂點(diǎn)到右焦點(diǎn)的距離為
,短軸長(zhǎng)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點(diǎn)的直線與橢圓分別交于
、
兩點(diǎn),若線段
的長(zhǎng)為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),右準(zhǔn)線為
,離心率為
.若直線
與橢圓
交于不同的兩點(diǎn)
、
,以線段
為直徑作圓
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓與
軸相切,求圓
被直線
截得的線段長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,曲線
上任意一點(diǎn)
分別與點(diǎn)
、
連線的斜率的乘積為
.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)直線與
軸、
軸分別交于
、
兩點(diǎn),若曲線
與直線
沒有公共點(diǎn),求證:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com