日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  

          如圖,橢圓C: 的焦點(diǎn)為F1(0,c)、F2(0,一c)(c>0),拋物線的焦點(diǎn)與F1重合,過F2的直線l與拋物線P相切,切點(diǎn)在第一象限,且與橢圓C相交于A、B兩點(diǎn),且

             (I)求證:切線l的斜率為定值;

           
             (Ⅱ)若拋物線P與直線l及y軸圍成的圖形面積為,求拋物線P的方程;

             (III)當(dāng)時(shí),求橢圓離心率e的取值范圍。

           

           

           

           

           

           

           

           

           

           

           

           

           

          【答案】

           解:(I)依題意拋物線

          設(shè)直線l與拋物線P的切點(diǎn)為,又切點(diǎn)在第一象限,

          所以切線l的斜率為定值。  ………………4分

             (文)解:設(shè)直線的斜率,則直線l的方程為:

          為定值。

             (II)由(I)可得:

          以拋物線P的方程為:  ………………8分

             (III)由,

            由

          設(shè)

          上單調(diào)遞增,

             (文)解:(I)同理(I)

             (II)拋物線P與直線l切于點(diǎn)E,由(1)可得

          又△OEF2面積為1,

          所以

          所以拋物線P的方程為:  ………………8分

            ………………10分

          設(shè)

          所以所求橢圓方程為  ………………13分

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,已知橢圓C:
          y2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          3
          2
          ,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與軸垂直的
          直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足
          PA
          AB
          =m-4,(m∈R)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(文科) 題型:044

          如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=

          左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

          如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足,()試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省湛江二中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,在直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與軸垂直的
          直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足=m-4,(m∈R)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年內(nèi)蒙古赤峰市高三統(tǒng)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖,在直角坐標(biāo)系xOy中,已知橢圓C:+=1(a>b>0)的離心率e=,左右兩個(gè)焦分別為F1、F2.過右焦點(diǎn)F2且與軸垂直的
          直線與橢圓C相交M、N兩點(diǎn),且|MN|=1.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)橢圓C的左頂點(diǎn)為A,下頂點(diǎn)為B,動(dòng)點(diǎn)P滿足=m-4,(m∈R)試求點(diǎn)P的軌跡方程,使點(diǎn)B關(guān)于該軌跡的對(duì)稱點(diǎn)落在橢圓C上.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案