日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點(diǎn) ,且在( , )上單調(diào),同時(shí)f(x)的圖象向左平移π個(gè)單位之后與原來的圖象重合,當(dāng) ,且x1≠x2時(shí),f(x1)=f(x2),則f(x1+x2)=(  )
          A.﹣
          B.﹣1
          C.1
          D.

          【答案】A
          【解析】解:函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點(diǎn)

          則:2sinφ=﹣ ,

          解得:sinφ=﹣ ,

          由于:|φ|< ),

          所以:φ=﹣

          則:f(x)=2sin(ωx ).

          同時(shí)f(x)的圖象向左平移π個(gè)單位之后與原來的圖象重合,

          所以: ,

          =2sin(ωx ),

          則:ωπ=2kπ,

          解得:ω=2k.

          函數(shù)在x∈( , )上單調(diào),

          則:

          解得:0

          所以:ω=2.

          則:f(x)=2sin(2x ).

          函數(shù)的對(duì)稱軸方程為: (k∈Z),

          已知: ,且x1≠x2時(shí),

          則:當(dāng)k=﹣3時(shí),x=﹣

          由于:f(x1)=f(x2),

          所以:x= ,

          則f(x1+x2)=f(

          =2sin(﹣

          =

          故A符合題意。
          故選:A

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知PC⊥平面ABC,AC=2 ,PC=BC,AB=4,∠BAC=30°. 點(diǎn)D是線段AB上靠近B的四等分點(diǎn),PE∥CB,PC∥EB.

          (Ⅰ)證明:直線AB⊥平面PCD;
          (Ⅱ)若F為線段AC上靠近C的四等分點(diǎn),求平面PDF與平面CBD所成銳二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這x個(gè)分店的年收入之和.

          x(個(gè))

          2

          3

          4

          5

          6

          y(百萬元)

          2.5

          3

          4

          4.5

          6


          (1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程 ;
          (2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為z=y﹣0.05x2﹣1.4,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤最大?
          (參考公式: ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】第五屆北京農(nóng)業(yè)嘉年華于2017年3月11日至5月7日在昌平區(qū)興壽鎮(zhèn)草莓博覽園中舉辦,設(shè)置“三館兩園一帶一谷一線”八大功能板塊.現(xiàn)安排六名志愿者去其中的“三館兩園”參加志愿者服務(wù)工作,若每個(gè)“館”與“園”都至少安排一人,則不同的安排方法種數(shù)為( 。
          A.C A
          B.5C A
          C.5A
          D.C A

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐P﹣ABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,E為AD的中點(diǎn),AB∥CD,AB⊥AD,CD=2AB=2AD=4.

          (Ⅰ)求證:平面PCD⊥平面PAD;
          (Ⅱ)求直線PB與平面PCD所成角的正弦值;
          (Ⅲ)在棱CD上是否存在點(diǎn)M,使得AM⊥平面PBE?若存在,求出 的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: 的離心率為 ,左焦點(diǎn)為F(﹣1,0),過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)在y軸上,是否存在定點(diǎn)E,使 恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個(gè)定值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:

          租用單車數(shù)量x(千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本y(元)

          3.2

          2.4

          2

          1.9

          1.7

          根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: (1)= +1.1,方程乙: (2)= +1.6.
          (1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):
          ①完成下表(計(jì)算結(jié)果精確到0.1)(備注: =yi , 稱為相應(yīng)于點(diǎn)(xi , yi)的殘差(也叫隨機(jī)誤差);

          租用單車數(shù)量x(千輛)

          2

          3

          4

          5

          8

          每天一輛車平均成本y(元)

          3.2

          2.4

          2

          1.9

          1.7

          模型甲

          估計(jì)值 (1)

          2.4

          2.1

          1.6

          殘差 (1)

          0

          ﹣0.1

          0.1

          模型乙

          估計(jì)值 (2)

          2.3

          2

          1.9

          殘差 (2)

          0.1

          0

          0

          ②分別計(jì)算模型甲與模型乙的殘差平方和Q1及Q2 , 并通過比較Q1 , Q2的大小,判斷哪個(gè)模型擬合效果更好.
          (2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時(shí),該公司平均一輛單車一天能收入10元,6元的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤=收入﹣成本).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若ax2+bx+c<0的解集為{x|x<-2,或x>4},則對(duì)于函數(shù)f(x)=ax2+bx+c應(yīng)有( )
          A.f(5)<f(2)<f(-1)
          B.f(5)<f(-1)<f(2)
          C.f(-1)<f(2)<f(5)
          D.f(2)<f(-1)<f(5)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=-x2-2x,g(x)=
          (1)求g[f(1)]的值;
          (2)若方程g[f(x)]-a=0有4個(gè)實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案