日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;

          Ⅱ)設(shè)為曲線上的動點,求點上點的距離的最小值,并求此時點的坐標(biāo).

          【答案】(Ⅰ)(Ⅱ)最小值為,此時點的坐標(biāo)為

          【解析】

          (Ⅰ)由條件利用同角三角函數(shù)的基本關(guān)系把參數(shù)方程化為直角坐標(biāo)方程,利用直角坐標(biāo)和極坐標(biāo)的互化公式、,把極坐標(biāo)方程化為直角坐標(biāo)方程;()求得橢圓上的點到直線的距離為,可得的最小值,以及此時的的值,從而求得點的坐標(biāo).

          (Ⅰ)對曲線,,

          ∴曲線的普通方程為

          對曲線

          ∴曲線的直角坐標(biāo)方程為

          Ⅱ)設(shè)曲線上的任意一點為, 則點到曲線的距離當(dāng),即時,,此時點的坐標(biāo)為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,過拋物線一點,作兩條直線分別交拋物線于,,當(dāng)斜率存在且傾斜角互補時

          值;

          直線上的截距時,面積最大值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某軟件公司新開發(fā)一款學(xué)習(xí)軟件,該軟件把學(xué)科知識設(shè)計為由易到難共12關(guān)的闖關(guān)游戲.為了激發(fā)闖關(guān)熱情,每闖過一關(guān)都獎勵若干慧幣(一種網(wǎng)絡(luò)虛擬幣).該軟件提供了三種獎勵方案:第一種,每闖過一關(guān)獎勵80慧幣;第二種,闖過第一關(guān)獎勵8慧幣,以后每一關(guān)比前一關(guān)多獎勵8慧幣;第三種,闖過第一關(guān)獎勵1慧幣,以后每一關(guān)比前一關(guān)獎勵翻一番(即增加1倍).游戲規(guī)定:闖關(guān)者須于闖關(guān)前任選一種獎勵方案.已知一名闖關(guān)者沖關(guān)數(shù)一定超過3關(guān)但不會超過9關(guān),為了得到更多的慧幣,他應(yīng)如何選擇獎勵方案?

          A.選擇第一種獎勵方案B.選擇第二種獎勵方案

          C.選擇第三種獎勵方案D.選擇的獎勵方案與其沖關(guān)數(shù)有關(guān)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】紅鈴蟲是棉花的主要害蟲之一,能對農(nóng)作物造成嚴(yán)重傷害,每只紅鈴蟲的平均產(chǎn)卵數(shù)y和平均溫度x有關(guān),現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.(表中

          平均溫度

          21

          23

          25

          27

          29

          32

          35

          平均產(chǎn)卵數(shù)/

          7

          11

          21

          24

          66

          115

          325

          27.429

          81.286

          3.612

          40.182

          147.714

          1)根據(jù)散點圖判斷,(其中自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)y關(guān)于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結(jié)果及表中數(shù)據(jù),求出y關(guān)x的回歸方程.(計算結(jié)果精確到小數(shù)點后第三位)

          2)根據(jù)以往統(tǒng)計,該地每年平均溫度達(dá)到28℃以上時紅鈴蟲會造成嚴(yán)重傷害,需要人工防治,其他情況均不需要人工防治,記該地每年平均溫度達(dá)到28℃以上的概率為.

          ①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應(yīng)的概率p.

          ②當(dāng)取最大值時,記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學(xué)期望和方差.

          附:線性回歸方程系數(shù)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標(biāo)原點.

          (1)求橢圓C的方程;

          (2)設(shè)點,為橢圓C上的兩個動點,當(dāng)為多少時,點O到直線MN的距離為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為緩解日益擁堵的交通狀況,不少城市實施車牌競價策略,以控制車輛數(shù)量.某地車牌競價的原則是:①“盲拍”,即所有參與競拍的人都是網(wǎng)絡(luò)報價,每個人并不知曉其他人的報價,也不知道參與當(dāng)期競拍的總?cè)藬?shù);②競價時間截止后,系統(tǒng)根據(jù)當(dāng)期車牌配額,按照競價人的出價從高到低分配名額.某人擬參加201810月份的車牌競價,他為了預(yù)測最低成交價,根據(jù)競拍網(wǎng)站的公告,統(tǒng)計了最近5個月參與競拍的人數(shù)(見表):

          月份

          2018.04

          2018.05

          2018.06

          2018.07

          2018.08

          月份編號t

          1

          2

          3

          4

          5

          競拍人數(shù)y(萬人)

          0.5

          0.6

          m

          1.4

          1.7

          1)由收集數(shù)據(jù)的散點圖發(fā)現(xiàn),可以線性回歸模擬競拍人數(shù)y(萬人)與月份編號t之間的相關(guān)關(guān)系.現(xiàn)用最小二乘法求得y關(guān)于t的回歸方程為,請求出表中的m的值并預(yù)測20189月參與競拍的人數(shù);

          2)某市場調(diào)研機(jī)構(gòu)對200位擬參加20189月車牌競拍人員的報價價格進(jìn)行了一個抽樣調(diào)查,得到如下一個頻數(shù)表:

          報價區(qū)間(萬元)

          [1,2)

          [2,3)

          [3,4)

          [4,5)

          [5,6)

          [67]

          頻數(shù)

          20

          60

          60

          30

          20

          10

          i)求這200位競拍人員報價的平均值(同一區(qū)間的報價可用該價格區(qū)間的中點值代替);

          ii)假設(shè)所有參與競拍人員的報價X服從正態(tài)分布,且(i)中所求的樣本平均數(shù)的估值,.20189月實際發(fā)放車牌數(shù)量為3174,請你合理預(yù)測(需說明理由)競拍的最低成交價.參考公式及數(shù)據(jù):若隨機(jī)變量Z服從正態(tài)分布,則:,,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

          1)求曲線的焦點的極坐標(biāo);

          2)若曲線的上焦點為,直線與曲線交于,兩點,,求直線的斜率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,棱長為1的正方體中,是線段上的動點,則下列結(jié)論正確的是( ).

          ①異面直線所成的角為

          ③三棱錐的體積為定值

          的最小值為2

          A.①②③B.①②④C.③④D.②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          已知函數(shù).

          1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個零點;

          2)設(shè)x0f(x)的一個零點,證明曲線y=ln x 在點A(x0ln x0)處的切線也是曲線的切線.

          查看答案和解析>>

          同步練習(xí)冊答案