已知函數(shù)

(

)
(1)若

在點

處的切線方程為

,求

的解析式及單調(diào)遞減區(qū)間;
(2)若

在

上存在極值點,求實數(shù)

的取值范圍.
(1)

,單調(diào)遞減區(qū)間有

;(2)

試題分析:(1)由題設知,

,

解方程組可得

的值,進而確定函數(shù)

的解析式及其導數(shù)的表達式

,并由不等式

的解得到函數(shù)據(jù)的單調(diào)遞減區(qū)間.
(2)函數(shù)

在

上存在極值點

導函數(shù)

在

上存在零點,且零點兩側(cè)導數(shù)值異號,因為,導函數(shù)的二次項系數(shù)為

,所以要分

與

兩種情詋進行討論,后者為一元二次方程的分布問題.
試題解析:

(1)由已知可得


此時

, 4分
由

得

的單調(diào)遞減區(qū)間為

; 7分
(2)由已知可得

在

上存在零點且在零點兩側(cè)

值異號
⑴

時,

,不滿足條件;
⑵

時,可得

在

上有解且

設

①當

時,滿足

在

上有解

或

此時滿足

②當

時,即

在

上有兩個不同的實根
則


無解
綜上可得實數(shù)

的取值范圍為

. 14分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)

,

,其中

,

為自然對數(shù)的底數(shù).
(1)若

在

處的切線

與直線

垂直,求

的值;
(2)求

在

上的最小值;
(3)試探究能否存在區(qū)間

,使得

和

在區(qū)間

上具有相同的單調(diào)性?若能存在,說明區(qū)間

的特點,并指出

和

在區(qū)間

上的單調(diào)性;若不能存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)

,

.
(1)若函數(shù)

在

處取得極值,求

的值;
(2)若函數(shù)

的圖象上存在兩點關(guān)于原點對稱,求

的范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
對任意實數(shù)a,b,定義F(a,b)=

(a+b-|a-b|),如果函數(shù)

,那么

的最大值為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)

有極值點

,且

,則關(guān)于x的方程

的不同實根個數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
點P是曲線

上任意一點,則點P到直線

的距離的最小值是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)

的導數(shù)是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在用土計算機進行的數(shù)學模擬實驗中,一種應用微生物跑步參加化學反應,其物理速度與時間的關(guān)系是

,則( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設函數(shù)f(x)在(0,+∞)內(nèi)可導,且f(e
x)=x+e
x,則

=__________.
查看答案和解析>>