日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          1
          3
          x3-ax2+4x

          (I)若曲線y=f(x)在點(1,f(1))處的切線的傾斜角為
          π
          4
          ,求實數(shù)a的值;
          (II)若函數(shù)y=f(x)在區(qū)間[0,2]上單調(diào)遞增,求實數(shù)a的取值范圍.
          分析:(I)根據(jù)切線的傾斜角為
          π
          4
          得到切線的斜率,根據(jù)導(dǎo)數(shù)的幾何意義可知x=1處的導(dǎo)數(shù)即為切線的斜率,建立等量關(guān)系,求出a即可;
          (II)根據(jù)函數(shù)y=f(x)在區(qū)間[0,2]上單調(diào)遞增,可轉(zhuǎn)化成x2-2ax+4≥0對一切x∈[0,2]恒成立,將參數(shù)a分離,轉(zhuǎn)化成當(dāng)x∈(0,2]時,等價于不等式a≤
          x2+4
          2x
          恒成立,利用均值不等式求出不等式右邊函數(shù)的最小值,即可求出a的范圍.
          解答:解:(Ⅰ)∵f(x)=
          1
          3
          x3-ax2+4x

          ∴f'(x)=x2-2ax+4(2分)
          f′(1)=12-2a+4=tan
          π
          4
          (4分)
          ∴a=2(6分)
          (Ⅱ)∵函數(shù)y=f(x)在區(qū)間[0,2]上單調(diào)遞增
          ∴x2-2ax+4≥0對一切x∈[0,2]恒成立
          x=0時成立
          當(dāng)x∈(0,2]時,等價于不等式a≤
          x2+4
          2x
          恒成立
          g(x)=
          x2+4
          2x
          =
          1
          2
          (x+
          4
          x
          )≥
          1
          2
          ×2
          x•
          4
          x
          =2

          當(dāng)x=
          4
          x
          ?x=2
          時取到等號,所以g(x)min=2
          ∴a≤2(12分)
          點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,以及函數(shù)恒成立問題等基礎(chǔ)題知識,考查運算求解能力、推理論證能力,分類討論思想、化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個極大值點;
          ②?x∈(8,+∞),f(x)>0.
          則實數(shù)a的取值范圍是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實數(shù)a的取值范圍;
          (2)當(dāng)x≥1時,不等式f(x)≥
          k
          x+1
          恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案