【題目】海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100 個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg).其頻率分布直方圖如下:
(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01).
附:,
【答案】(1);(2)見解析;(3)
.
【解析】試題分析:(1)利用相互獨(dú)立事件概率公式即可求得事件A的概率估計(jì)值;(2)寫出列聯(lián)表計(jì)算的觀測值,即可確定有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);(3)結(jié)合頻率分布直方圖估計(jì)中位數(shù)為
.
試題解析:(1)記B表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于” ,
表示事件“新養(yǎng)殖法的箱產(chǎn)量不低于
”
由題意知
舊養(yǎng)殖法的箱產(chǎn)量低于的頻率為
故的估計(jì)值為0.62
新養(yǎng)殖法的箱產(chǎn)量不低于的頻率為
故的估計(jì)值為0.66
因此,事件A的概率估計(jì)值為
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表
箱產(chǎn)量 | 箱產(chǎn)量 | |
舊養(yǎng)殖法 | 62 | 38 |
新養(yǎng)殖法 | 34 | 66 |
由于
故有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)因?yàn)樾吗B(yǎng)殖法的箱產(chǎn)量頻率分布直方圖中,箱產(chǎn)量低于的直方圖面積為
,
箱產(chǎn)量低于的直方圖面積為
故新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值為
.
點(diǎn)睛:(1)利用獨(dú)立性檢驗(yàn),能夠幫助我們對(duì)日常生活中的實(shí)際問題作出合理的推斷和預(yù)測.獨(dú)立性檢驗(yàn)就是考察兩個(gè)分類變量是否有關(guān)系,并能較為準(zhǔn)確地給出這種判斷的可信度,隨機(jī)變量的觀測值值越大,說明“兩個(gè)變量有關(guān)系”的可能性越大.
(2)利用頻率分布直方圖求眾數(shù)、中位數(shù)和平均數(shù)時(shí),應(yīng)注意三點(diǎn):①最高的小長方形底邊中點(diǎn)的橫坐標(biāo)即眾數(shù);②中位數(shù)左邊和右邊的小長方形的面積和是相等的;③平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個(gè)小長方形的面積乘以小長方形底邊中點(diǎn)的橫坐標(biāo)之和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a2+b2+
ab=c2.
(1)求C;
(2)設(shè)cos Acos B=,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直角三角形的兩條直角邊
,
,
為斜邊
上一點(diǎn),沿
將三角形折成直二面角
,此時(shí)二面角
的正切值為
,則翻折后
的長為( )
A. 2 B. C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,且橢圓
過點(diǎn)
,記橢圓
的左、右頂點(diǎn)分別為
,點(diǎn)
是橢圓
上異于
的點(diǎn),直線
與直線
分別交于點(diǎn)
.
(1)求橢圓的方程;
(2)過點(diǎn)作橢圓
的切線
,記
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)圓M與圓(x﹣1)2+y2=1相外切且與y軸相切,則動(dòng)圓M的圓心的軌跡記C,
(1)求軌跡C的方程;
(2)定點(diǎn)A(3,0)到軌跡C上任意一點(diǎn)的距離|MA|的最小值;
(3)經(jīng)過定點(diǎn)B(﹣2,1)的直線m,試分析直線m與軌跡C的公共點(diǎn)個(gè)數(shù),并指明相應(yīng)的直線m的斜率k是否存在,若存在求k的取值或取值范圍情況[要有解題過程,沒解題方程只有結(jié)論的只得結(jié)論分].
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex+ax2-e2x.
(1)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線平行于x軸,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x>0時(shí),總有f(x)>-e2x,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩條不重合的直線和兩個(gè)不重合的平面
,若
,則下列四個(gè)命題:①若
,則
;②若
,則
; ③若
,則
;④若
,則
,其中正確命題的個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)f(x)滿足:對(duì)任意x∈R,都有f(x+1)+f(x)=2x2﹣2x﹣3
(1)求f(x)的解析式;
(2)若關(guān)于x的方程f(x)=a有兩個(gè)實(shí)數(shù)根x1 , x2 , 且滿足:﹣1<x1<2<x2 , 求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com