日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABC的周長為6,三邊長BC,CA,AB構(gòu)成等差數(shù)列,則
          BA
          BC
          的取值范圍為
           
          分析:y由已知可得a+c=2b=4,從而c=4-a,結(jié)合三角形兩邊之和大于第三邊可求a的范圍,運用向量的數(shù)量積把
          BA
          BC
          轉(zhuǎn)化為關(guān)于a的二次函數(shù),求出函數(shù)的取值范圍.
          解答:解:設(shè) BC=a,AC=b,AB=c
          ∵BC,CA,AB成等差數(shù)列∴2b=a+c
          又∵a+b+c=6∴b=2,a+c=4
          ∵a+2>c,c+2>a,a+c=4,∴1<a<3
          BA
          BC
          =caCosB=ca×
          a2+c2-b2
          2ca
          =
          a2+c2-4
          2

          =
          a2+(4-a)2-4
          2
          =a2-4a+6
          =(a-2)2+2
          ∵1<a<3,
          2≤
          BA
          BC
          <3

          故答案為[2,3)
          點評:本題是一道三角形的基本知識、數(shù)列、向量的數(shù)量積的定義綜合在一起的試題,綜合的知識點較多,但都是基本運用,這就要求考生熟練掌握基本知識,還要具備靈活運用的基本能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,三角A,B,C所對的邊分別為a,b,c.已知△ABC的周長為
          2
          +1
          ,且sinA+sinB=
          2
          sinC

          (Ⅰ)求邊c的長;
          (Ⅱ)若△ABC的面積為
          1
          6
          sinC
          ,求角C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC的周長為6,且
          3
          cos
          A+B
          2
          =sinC

          (1)求角C;
          (2)求△ABC面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC的周長為6,|
          BC
          |,|
          CA
          |,|
          AB
          |
          依次為a,b,c,成等比數(shù)列.
          (1)求證:0<B≤
          π
          3

          (2)求△ABC的面積S的最大值;
          (3)求
          BA
          BC
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知△ABC的周長為18,若sinA:sinB:sinC=2:3:4,則此三角形中最大邊的長為
          8
          8

          查看答案和解析>>

          同步練習(xí)冊答案