日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,一個(gè)角形海灣(常數(shù)為銳角).?dāng)M用長(zhǎng)度為為常數(shù))的圍網(wǎng)圍成一個(gè)養(yǎng)殖區(qū),有以下兩種方案可供選擇:方案一:如圖1,圍成扇形養(yǎng)殖區(qū),其中;方案二:如圖2,圍成三角形養(yǎng)殖區(qū),其中.

          1)求方案一中養(yǎng)殖區(qū)的面積

          2)求方案二中養(yǎng)殖區(qū)的最大面積(用表示);

          3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說明理由.

          【答案】1;(2;(3)應(yīng)選擇方案一.

          【解析】

          1)設(shè)此扇形所在的圓的半徑為,則,可得.利用扇形面積計(jì)算公式可得

          2)設(shè),,利用余弦定理與基本不等式的性質(zhì)可得:,可得:,即可得出.

          3)由于,令,求導(dǎo),可得上單調(diào)遞增.即可得出結(jié)論.

          1)設(shè),則,即,所以

          2)設(shè).由余弦定理,得,所以

          所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.

          所以,即

          3,

          ,則

          當(dāng)時(shí),,所以在區(qū)間上單調(diào)遞增.

          所以,當(dāng)時(shí),總有,即,即

          答:為使養(yǎng)殖區(qū)面積最大,應(yīng)選擇方案一.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;

          方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為.第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.

          方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.

          (1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金(元)的分布列;

          (2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面為直角梯形,,,平面

          1)求異面直線所成角的大。

          2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知?jiǎng)又本垂直于軸,與橢圓交于兩點(diǎn),點(diǎn)在直線上,.

          1)求點(diǎn)的軌跡的方程;

          2)直線與橢圓相交于,與曲線相切于點(diǎn),為坐標(biāo)原點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自201911日起,個(gè)人所得稅起征點(diǎn)和稅率作了調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

          1)假如小明某月的工資、薪金等稅前收入為7500元,請(qǐng)你幫小明算一下調(diào)整后小明的實(shí)際收入比調(diào)整前增加了多少?

          2)某稅務(wù)部門在小明所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

          先從收入在的人群中按分層抽樣抽取7人,再?gòu)闹羞x3人作為新納稅法知識(shí)宣講員,用隨機(jī)變量表示抽到作為宣講員的收入在元的人數(shù),求的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為,弦過點(diǎn),的周長(zhǎng)為,橢圓的離心率為

          1)求橢圓的方程;

          2)若,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是定義在R上的兩個(gè)周期函數(shù),的周期為4的周期為2,且是奇函數(shù).當(dāng)時(shí),,,其中k>0.若在區(qū)間(0,9]上,關(guān)于x的方程8個(gè)不同的實(shí)數(shù)根,則k的取值范圍是_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的圓心為,直線l過點(diǎn)且與x軸不重合,l交圓CD兩點(diǎn),過的平行線,交于點(diǎn)E.設(shè)點(diǎn)E的軌跡為.

          1)求的方程;

          2)直線相切于點(diǎn)M與兩坐標(biāo)軸的交點(diǎn)為AB,直線經(jīng)過點(diǎn)M且與垂直,的另一個(gè)交點(diǎn)為N,當(dāng)取得最小值時(shí),求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三個(gè)內(nèi)角所對(duì)的邊分別是,若.

          1)求角;

          2)若的外接圓半徑為2,求周長(zhǎng)的最大值.

          【答案】(1) ;(2) .

          【解析】試題分析:(1由正弦定理將邊角關(guān)系化為邊的關(guān)系,再根據(jù)余弦定理求角,(2先根據(jù)正弦定理求邊,用角表示周長(zhǎng),根據(jù)兩角和正弦公式以及配角公式化為基本三角函數(shù),最后根據(jù)正弦函數(shù)性質(zhì)求最大值.

          試題解析:1)由正弦定理得,

          ,∴,即

          因?yàn)?/span>,則.

          (2)由正弦定理

          , , ,

          ∴周長(zhǎng)

          ,

          ∴當(dāng)時(shí)

          ∴當(dāng)時(shí), 周長(zhǎng)的最大值為.

          型】解答
          結(jié)束】
          18

          【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:

          其中: , ,

          (1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;

          (2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(的值精確到0.01)

          (3)若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的0.9~1.06倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的1.06~1.12倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.12~1.20倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的1.20倍及以上,則為高度高血壓人群.一位收縮壓為180mmHg的70歲的老人,屬于哪類人群?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案