日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù) .

          (Ⅰ)判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由;

          (Ⅱ)記,討論的單調(diào)性;

          (Ⅲ)若恒成立,求實(shí)數(shù)的取值范圍.

          【答案】(Ⅰ)1;(Ⅱ) 時(shí), 單調(diào)遞減, 時(shí), 單調(diào)遞減,在單調(diào)遞增;(Ⅲ) .

          【解析】試題分析:(Ⅰ)由題意知,∴,

          單調(diào)遞增,又 ,因此函數(shù)內(nèi)存在零點(diǎn).

          所以的零點(diǎn)的個(gè)數(shù)為1.

          (Ⅱ)由題意, ,分時(shí)和 兩種情況討論,可知的單調(diào)性;

          (Ⅲ)由題意: ,

          問(wèn)題等價(jià)于恒成立,

          討論可知, ,

          即當(dāng)恒成立時(shí),必有.

          當(dāng)時(shí),設(shè),

          ①若,則時(shí),, 不恒成立.

          ②若,即時(shí), 恒成立.

          試題解析:(Ⅰ)由題意知,∴,

          單調(diào)遞增,

          , ,

          因此函數(shù)內(nèi)存在零點(diǎn).

          所以的零點(diǎn)的個(gè)數(shù)為1.

          (Ⅱ),

          ,

          當(dāng)時(shí), , 上單調(diào)遞減;

          當(dāng)時(shí),由,解得(舍去負(fù)值),

          所以時(shí), , 單調(diào)遞減,

          時(shí), , 單調(diào)遞增.

          綜上時(shí), 單調(diào)遞減,

          時(shí), 單調(diào)遞減,在單調(diào)遞增.

          (Ⅲ)由題意:

          問(wèn)題等價(jià)于恒成立,

          設(shè),

          若記,

          當(dāng)時(shí), ,

          單調(diào)遞增,

          ,

          ,由于,故,故

          即當(dāng)恒成立時(shí),必有.

          當(dāng)時(shí),設(shè),

          ①若,則時(shí),

          由(Ⅱ)知, 單調(diào)遞減, , 單調(diào)遞增,

          因此,而,

          即存在,使,

          故當(dāng)時(shí), 不恒成立.

          ②若,即時(shí),

          設(shè),

          由于,

          ,故,

          因此,

          單調(diào)遞增.

          所以時(shí),

          時(shí), 恒成立.

          綜上: , 成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)(1, )處的切線方程;

          (Ⅱ)討論函數(shù)的單調(diào)區(qū)間;

          (Ⅲ)已知,對(duì)于函數(shù)圖象上任意不同的兩點(diǎn),其中,直線的斜率為,記,若求證

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知為常數(shù)).

          (1)求的極值;

          (2)設(shè),記,已知為函數(shù)是兩個(gè)零點(diǎn),求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線焦點(diǎn)為,點(diǎn)A,B,C為該拋物線上不同的三點(diǎn),且滿足.

          (1)求;

          (2)若直線軸于點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)若 的一個(gè)極值點(diǎn),求 值及的單調(diào)區(qū)間;

          (2)當(dāng) 時(shí),求在區(qū)間上的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在投擲骰子試驗(yàn)中,根據(jù)向上的點(diǎn)數(shù)可以定義許多事件,如:A={出現(xiàn)1點(diǎn)},B={出現(xiàn)3點(diǎn)或4點(diǎn)},C={出現(xiàn)的點(diǎn)數(shù)是奇數(shù)},D={出現(xiàn)的點(diǎn)數(shù)是偶數(shù)}.

          (1)說(shuō)明以上4個(gè)事件的關(guān)系.

          (2)求兩兩運(yùn)算的結(jié)果.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙、丙三人組成一個(gè)小組參加電視臺(tái)舉辦的聽(tīng)曲猜歌名活動(dòng),在每一輪活動(dòng)中,依次播放三首樂(lè)曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯(cuò),則活動(dòng)立即結(jié)束;若三人均猜對(duì),則該小組進(jìn)入下一輪,該小組最多參加三輪活動(dòng).已知每一輪甲猜對(duì)歌名的概率是,乙猜對(duì)歌名的概率是,丙猜對(duì)歌名的概率是,甲、乙、丙猜對(duì)與否互不影響.

          (I)求該小組未能進(jìn)入第二輪的概率;

          (Ⅱ)記乙猜歌曲的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù), 為正實(shí)數(shù)

          1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

          2求證: ;

          3)若函數(shù)且只有個(gè)零點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在哈爾濱的中央大街的步行街同側(cè)有6塊廣告牌,牌的底色可選用紅、藍(lán)兩種顏色,若要求相鄰兩塊牌的底色不都為藍(lán)色,則不同的配色方案共有( )

          A. 20 B. 21 C. 22 D. 24

          查看答案和解析>>

          同步練習(xí)冊(cè)答案