日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線的焦點與橢圓的一個焦點重合,過點的直線與拋物線交于兩點,若,則的值(   )

          A.             B.             C.             D.3

           

          【答案】

          B

          【解析】

          試題分析:易知拋物線方程為,所以A點坐標(biāo)為,又點A、P求出直線AB的方程為:,聯(lián)立方程組:解得B的橫坐標(biāo)為,由拋物線的定義知,,所以的值為。

          考點:本題考查直線與拋物線的綜合問題;橢圓的簡單性質(zhì);拋物線的標(biāo)準(zhǔn)方程。

          點評:本題考查直線和拋物線的性質(zhì)的靈活應(yīng)用,屬于中檔題。解題時要認(rèn)真審題,仔細(xì)計算,注意合理地進(jìn)行等價轉(zhuǎn)化.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•浦東新區(qū)二模)(1)設(shè)橢圓C1
          x2
          a2
          +
          y2
          b2
          =1
          與雙曲線C29x2-
          9y2
          8
          =1
          有相同的焦點F1、F2,M是橢圓C1與雙曲線C2的公共點,且△MF1F2的周長為6,求橢圓C1的方程;
          我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
          (2)如圖,已知“盾圓D”的方程為y2=
          4x            (0≤x≤3)
          -12(x-4)  (3<x≤4)
          .設(shè)“盾圓D”上的任意一點M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
          (3)由拋物線弧E1:y2=4x(0≤x≤
          2
          3
          )與第(1)小題橢圓弧E2
          x2
          a2
          +
          y2
          b2
          =1
          2
          3
          ≤x≤a
          )所合成的封閉曲線為“盾圓E”.設(shè)過點F(1,0)的直線與“盾圓E”交于A、B兩點,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
          r1
          r2
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
          (1)當(dāng)m=1時,求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx(0≤x≤
          2m
          3
          )
          和橢圓弧
          x2
          4m2
          +
          y2
          3m2
          =1
          (
          2m
          3
          ≤x≤2m)

          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市浦東新區(qū)高三4月高考預(yù)測(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (1)設(shè)橢圓與雙曲線有相同的焦點是橢圓與雙曲線的公共點,且的周長為,求橢圓的方程;

          我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.

          (2)如圖,已知“盾圓”的方程為.設(shè)“盾圓”上的任意一點的距離為到直線的距離為,求證:為定值;

           

          (3)由拋物線弧)與第(1)小題橢圓弧)所合成的封閉曲線為“盾圓”.設(shè)過點的直線與“盾圓”交于兩點,,),試用表示;并求的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

          已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為、,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個交點為.

          (1)當(dāng)時,求橢圓的方程;

          (2)在(1)的條件下,直線過焦點,與拋物線交于兩點,若弦長等于的周長,求直線的方程;

          (3)由拋物線弧和橢圓弧

          )合成的曲線叫“拋橢圓”,是否存在以原點為直角頂點,另兩個頂點落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

          已知橢圓的長軸長是焦距的兩倍,其左、右焦點依次為,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個交點為.

          (1)當(dāng)時,求橢圓的方程;

          (2)在(1)的條件下,直線過焦點,與拋物線交于兩點,若弦長等于的周長,求直線的方程;

          (3)由拋物線弧和橢圓弧

          )合成的曲線叫“拋橢圓”,是否存在以原點為直角頂點,另兩個頂點落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案