日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱錐中,均為邊長是2的等邊三角形,平面平面CBE,點(diǎn)O是BE的中點(diǎn)。

          (1)求證:

          (2)求直線AB與平面ACE所成角的正弦值。

          【答案】(1)見解析;(2)

          【解析】

          (1)證明AO即可;(2)以O(shè)為原點(diǎn),OB為x軸建立空間直角坐標(biāo)系,求面ACE的法向量,由空間向量的線面角公式即可求.

          (1)∵是等邊三角形,點(diǎn)O是BE的中點(diǎn),∴ AOBE,又平面平面CBE,BE為交線,∴AO,又平面CBE∴

          (2)連接OC,由(1)知,AO以O(shè)為原點(diǎn),OB為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,如圖:

          面ACE的法向量為,則設(shè)AB與平面ACE所成角為則直線AB與平面ACE所成角的正弦值

          ∴直線AB與平面ACE所成角的正弦值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對(duì)成都市一中心路段(限行速度為千米/小時(shí))的擁堵情況進(jìn)行調(diào)查統(tǒng)計(jì),通過數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(/千米)與車流密度(千米/小時(shí))之間存在如下關(guān)系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當(dāng)車流密度在時(shí),車流速度是車流密度的一次函數(shù);車流密度一旦達(dá)到該路段交通完全癱瘓(車流速度為零).

          1)求關(guān)于的函數(shù)

          2)已知車流量(單位時(shí)間內(nèi)通過的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)等比數(shù)列的公比為,其前項(xiàng)和為,前項(xiàng)之積為,并且滿足條件:,,下列結(jié)論中正確的是( )

          A. B.

          C. 是數(shù)列中的最大值 D. 數(shù)列無最小值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

          1)求證:函數(shù)是偶函數(shù);

          2)求證:函數(shù)上單調(diào)遞減;

          3)求函數(shù)在閉區(qū)間上的最小值和最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種蔬菜從1月1日起開始上市,通過市場(chǎng)調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時(shí)間(單位:10天)的數(shù)據(jù)如下表:

          時(shí)間

          5

          11

          25

          種植成本

          15

          10.8

          15

          (1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,中(其中),選取一個(gè)合適的函數(shù)模型描述該蔬菜種植成本與上市時(shí)間的變化關(guān)系;

          (2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時(shí)的上市時(shí)間及最低種植成本.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)有甲、乙兩套設(shè)備生產(chǎn)同一種產(chǎn)品,為了檢測(cè)兩套設(shè)備的生產(chǎn)質(zhì)量情況,隨機(jī)從兩套設(shè)備生產(chǎn)的大量產(chǎn)品中各抽取了50件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品. 表1是甲套設(shè)備的樣本的頻數(shù)分布表,圖1是乙套設(shè)備的樣本的頻率分布直方圖.

          表1:甲套設(shè)備的樣本的頻數(shù)分布表

          質(zhì)量指標(biāo)值

          [95,100)

          [100,105)

          [105,110)

          [110,115)

          [115,120)

          [120,125]

          頻數(shù)

          1

          4

          19

          20

          5

          1

          圖1:乙套設(shè)備的樣本的頻率分布直方圖

          (1)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲、乙兩套設(shè)備的選擇有關(guān);

          甲套設(shè)備

          乙套設(shè)備

          合計(jì)

          合格品

          不合格品

          合計(jì)

          ,求的期望.

          附:

          P(K2k0)

          0.15

          0.10

          0.050

          0.025

          0.010

          k0

          2.072

          2.706

          3.841

          5.024

          6.635

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行

          (1)的值;

          (2)的單調(diào)區(qū)間和最小值;

          (3)對(duì)任意恒成立,求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)求的最小正周期;

          2)求的最值及取最值時(shí)相應(yīng)的x的值;

          3)求函數(shù)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著節(jié)能減排意識(shí)深入人心以及共享單車在饒城的大范圍推廣,越來越多的市民在出行時(shí)喜歡選擇騎行共享單車。為了研究廣大市民在共享單車上的使用情況,某公司在我市隨機(jī)抽取了100名用戶進(jìn)行調(diào)查,得到如下數(shù)據(jù):

          每周使用次數(shù)

          1次

          2次

          3次

          4次

          5次

          6次及以上

          4

          3

          3

          7

          8

          30

          6

          5

          4

          4

          6

          20

          合計(jì)

          10

          8

          7

          11

          14

          50

          (1)如果認(rèn)為每周使用超過3次的用戶為“喜歡騎行共享單車”,請(qǐng)完成列表(見答題卡),并判斷能否在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為是否“喜歡騎行共享單車”與性別有關(guān)?

          (2)每周騎行共享單車6次及6次以上的用戶稱為“騎行達(dá)人”,視頻率為概率,在我市所有“騎行達(dá)人”中,隨機(jī)抽取4名用戶.

          ① 求抽取的4名用戶中,既有男生“騎行達(dá)人”又有女“騎行達(dá)人”的概率;

          ②為了鼓勵(lì)女性用戶使用共享單車,對(duì)抽出的女“騎行達(dá)人”每人獎(jiǎng)勵(lì)500元,記獎(jiǎng)勵(lì)總金額為,求的分布列及數(shù)學(xué)期望.

          附表及公式:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

            1. <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>