【題目】已知點(diǎn)是橢圓
的右焦點(diǎn),點(diǎn)
,
分別是
軸,
軸上的動(dòng)點(diǎn),且滿足
.若點(diǎn)
滿足
(
為坐標(biāo)原點(diǎn)).
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)任作一直線與點(diǎn)
的軌跡交于
,
兩點(diǎn),直線
,
與直線
分別交于點(diǎn)
,
,試判斷以線段
為直徑的圓是否經(jīng)過(guò)點(diǎn)
?請(qǐng)說(shuō)明理由.
【答案】(1)(2)經(jīng)過(guò)
【解析】
(Ⅰ)由橢圓的方程,得到右焦點(diǎn)
的坐標(biāo),根據(jù)向量的數(shù)量積的運(yùn)算公式,求得
和
,代入即可求解拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)解法一:設(shè)直線的方程為
,得到
,
,聯(lián)立方程組,求得
,利用向量的數(shù)量積的運(yùn)算
,即可得到證明;
解法二:①當(dāng)時(shí),利用向量的數(shù)量積得到
;②當(dāng)
不垂直
軸時(shí),設(shè)直線
的方程為
,聯(lián)立方程組,求解
,進(jìn)而證得
,即可得到證明.
(Ⅰ)∵橢圓右焦點(diǎn)
的坐標(biāo)為
,
∴.∵
,
∴由,得
.
設(shè)點(diǎn)的坐標(biāo)為
,由
,有
,
,代入
,得
.
即點(diǎn)的軌跡
的方程為
.
(Ⅱ)解法一:設(shè)直線的方程為
,
,
,
則:
,
:
.
由得
,同理得
.
∴,
,則
.
由得
,∴
.
則.
因此,以線段為直徑的圓經(jīng)過(guò)點(diǎn)
.
解法二:①當(dāng)時(shí),
,
,則
:
,
:
.
由,得點(diǎn)
的坐標(biāo)為
,則
,
由,得點(diǎn)
的坐標(biāo)為
,則
.
∴.
②當(dāng)不垂直
軸時(shí),設(shè)直線
的方程為
,
,
,
同解法一,得.
由,得
,∴
.
則.
因此,以線段為直徑的圓經(jīng)過(guò)點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)的導(dǎo)函數(shù)f′(x)的圖像如圖所示,則下列結(jié)論正確的是( )
A.f(x)在(-3,-1)上先增后減B.x=-2是f(x)極小值點(diǎn)
C.f(x)在(-1,1)上是增函數(shù)D.x=1是函數(shù)f(x)的極大值點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)際象棋比賽中.勝局一得1分,平一局得0.5分,負(fù)一局得0分。今有8名選手進(jìn)行單循環(huán)比賽(每?jī)扇司愐痪郑,賽完后、發(fā)現(xiàn)各選手的得分均不相同,當(dāng)按得分由大到小排列好名次后,第四名選手得4.5分,第二名的得分等于最后四名選手得分總和.問(wèn)前三名選手各得多少分?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018河南豫南九校高三下學(xué)期第一次聯(lián)考】設(shè)函數(shù).
(I)當(dāng)時(shí),
恒成立,求
的范圍;
(II)若在
處的切線為
,且方程
恰有兩解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面
是邊長(zhǎng)為2的菱形,
,
,平面
平面
,點(diǎn)
為棱
的中點(diǎn).
(Ⅰ)在棱上是否存在一點(diǎn)
,使得
平面
,并說(shuō)明理由;
(Ⅱ)當(dāng)二面角的余弦值為
時(shí),求直線
與平面
所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
(
為參數(shù),實(shí)數(shù)
),曲線
(
為參數(shù),實(shí)數(shù)
).在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,射線
與
交于
,
兩點(diǎn),與
交于
,
兩點(diǎn).當(dāng)
時(shí),
;當(dāng)
,
.
(1)求和
的值.
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在上的函數(shù)
,若滿足:對(duì)任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界
(1)設(shè),判斷
在
上是否是有界函數(shù),若是,說(shuō)明理由,并寫出
所有上界的值的集合;若不是,也請(qǐng)說(shuō)明理由.
(2)若函數(shù)在
上是以
為上界的有界函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①命題“若,則
”的否命題為“若
,則
”;
②“”是“
”的必要不充分條件;
③命題“,使得
”的否定是:“
,均有
”;
④命題“若,則
”的逆否命題為真命題
其中所有正確命題的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)從坐標(biāo)原點(diǎn)
出發(fā)沿著拋物線
移動(dòng)到點(diǎn)
,則在移動(dòng)過(guò)程中當(dāng)
為最大時(shí),
點(diǎn)的橫坐標(biāo)
________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com