日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=ax﹣ (a,b∈N*),f(1)= 且f(2)<2.
          (1)求a,b的值;
          (2)判斷并證明函數(shù)y=f(x)在區(qū)間(﹣1,+∞)上的單調(diào)性.

          【答案】
          (1)解:∵ , ,

          ,

          又∵a,b∈N*

          ∴b=1,a=1;


          (2)解:由(1)得 ,

          函數(shù)在(﹣1,+∞)單調(diào)遞增.

          證明:任取x1,x2且﹣1<x1<x2,

          =

          ∵﹣1<x1<x2,

          ,

          即f(x1)<f(x2),

          故函數(shù) 在(﹣1,+∞)上單調(diào)遞增


          【解析】(1)由 , ,從而求出b=1,a=1;(2)由(1)得 ,得函數(shù)在(﹣1,+∞)單調(diào)遞增.從而有f(x1 )﹣f(x2 )= ,進(jìn)而 ,故函數(shù) 在(﹣1,+∞)上單調(diào)遞增.
          【考點精析】通過靈活運用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減即可以解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)f(x)=x2﹣16x+q+3
          (1)若函數(shù)在區(qū)間[﹣1,1]上存在零點,求實數(shù)q的取值范圍;
          (2)問:是否存在常數(shù)q(0<q<10),使得當(dāng)x∈[q,10]時,f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,四個頂點構(gòu)成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.

          (1)求橢圓的方程;

          (2)當(dāng)變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,動點P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(1,1)的距離,記點P的軌跡為曲線W,給出下列四個結(jié)論: ①曲線W關(guān)于原點對稱;
          ②曲線W關(guān)于直線y=x對稱;
          ③曲線W與x軸非負(fù)半軸,y軸非負(fù)半軸圍成的封閉圖形的面積小于 ;
          ④曲線W上的點到原點距離的最小值為2﹣
          其中,所有正確結(jié)論的序號是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若f(x)=﹣ x2+bln(x+2)在(﹣1,+∞)上是減函數(shù),則b的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x3+x2f'(1).
          (1)求f'(1)和函數(shù)x的極值;
          (2)若關(guān)于x的方程f(x)=a有3個不同實根,求實數(shù)a的取值范圍;
          (3)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在R上定義運算:ab=ab+2a+b,則滿足x(x﹣2)<0的實數(shù)x的取值范圍為(
          A.(0,2)
          B.(﹣2,1)
          C.(﹣∞,﹣2)∪(1,+∞)
          D.(﹣1,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y2=2px(p>0)的焦點為F,已知A,B為拋物線上的兩個動點,且滿足∠AFB=120°,過弦AB的中點M作拋物線準(zhǔn)線的垂線MN,垂足為N,則 的最大值為(
          A.2
          B.
          C.1
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點,點是圓上的任意一點,設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點.

          (1)求點的軌跡方程;

          (2)已知兩點的坐標(biāo)分別為 ,點是直線上的一個動點,且直線分別交(1)中點的軌跡于兩點(四點互不相同),證明:直線恒過一定點,并求出該定點坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案