日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點(diǎn)是圓上一動(dòng)點(diǎn),線段與圓相交于點(diǎn).直線經(jīng)過,并且垂直于軸,上的射影點(diǎn)為.

          (1)求點(diǎn)的軌跡的方程;

          (2)設(shè)圓軸的左、右交點(diǎn)分別為,,點(diǎn)是曲線上的點(diǎn)(點(diǎn),不重合),直線,與直線分別相交于點(diǎn),求證:以直徑的圓經(jīng)過定點(diǎn).

          【答案】(1)(2)見證明

          【解析】

          (1)設(shè)點(diǎn),,由已知條件找到兩點(diǎn)坐標(biāo)之間的關(guān)系,然后利用相關(guān)點(diǎn)法即可求得點(diǎn)E的軌跡方程;(2)根據(jù)已知條件設(shè)直線AP,BP的方程,當(dāng)x=4時(shí)可得點(diǎn)M,N的坐標(biāo),從而可得以MN為直徑的圓的方程,整理即得圓經(jīng)過的定點(diǎn).

          (1)設(shè)點(diǎn),.

          當(dāng)時(shí),易得;

          當(dāng)時(shí),有,所以.又,所以.

          代入的方程,得,即.

          (2)證明:設(shè)直線,的斜率分別為,記.

          .

          直線的方程為,所以.

          直線的方程為,所以.

          為直徑的圓的方程為.

          整理,得 .

          解得

          所以以為直徑的圓過定點(diǎn),.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

          A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

          (1)求異面直線A1BAC1所成角的余弦值;

          (2)求二面角BA1DA的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是( )

          A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個(gè)點(diǎn)

          B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌

          C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

          D.將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其方差也要加上或減去這個(gè)常數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

          2若函數(shù),討論函數(shù)的單調(diào)性;

          32中函數(shù)有兩個(gè)極值點(diǎn),且不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,其中.

          (Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若恒成立,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程是,在以極點(diǎn)為原點(diǎn)O,極軸為x軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系xOy中,曲線C2的參數(shù)方程為θ為參數(shù)).

          1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程;

          2)將曲線C2經(jīng)過伸縮變換后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動(dòng)點(diǎn),求|MN|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分14分)

          已知數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,數(shù)列的前項(xiàng)和

          1)求數(shù)列的通項(xiàng)公式;

          2)求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某日A, B, C三個(gè)城市18個(gè)銷售點(diǎn)的小麥價(jià)格如下表:

          銷售點(diǎn)序號(hào)

          所屬城市

          小麥價(jià)格(元/噸)

          銷售點(diǎn)序號(hào)

          所屬城市

          小麥價(jià)格(元/噸)

          1

          A

          2420

          10

          B

          2500

          2

          C

          2580

          11

          A

          2460

          3

          C

          2470

          12

          A

          2460

          4

          C

          2540

          13

          A

          2500

          5

          A

          2430

          14

          B

          2500

          6

          C

          2400

          15

          B

          2450

          7

          A

          2440

          16

          B

          2460

          8

          B

          2500

          17

          A

          2460

          9

          A

          2440

          18

          A

          2540

          (Ⅰ)求B市5個(gè)銷售點(diǎn)小麥價(jià)格的中位數(shù)

          (Ⅱ)甲從B市的銷售點(diǎn)中隨機(jī)挑選一個(gè)購(gòu)買1噸小麥,乙從C市的銷售點(diǎn)中隨機(jī)挑選一個(gè)購(gòu)買1噸小麥,求甲花費(fèi)的費(fèi)用比乙高的概率;

          (Ⅲ)如果一個(gè)城市的銷售點(diǎn)小麥價(jià)格方差越大,則稱其價(jià)格差異性越大.請(qǐng)你對(duì)A、B、C三個(gè)城市按照小麥價(jià)格差異性從大到小進(jìn)行排序(只寫出結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案