日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C.

          1)求橢圓C的離心率;

          2)設分別為橢圓C的左右頂點,點P在橢圓C上,直線AP,BP分別與直線相交于點M,N.當點P運動時,以M,N為直徑的圓是否經(jīng)過軸上的定點?試證明你的結論.

          【答案】(1)(2)以為直徑的圓經(jīng)過軸上的定點,證明見解析

          【解析】

          1)先將轉化為,根據(jù)橢圓的性質得到,即可求出離心率.

          2)根據(jù)橢圓方程求出,設,則①,分別求出直線的方程,再分別與相交于點 ,設以為直徑的圓經(jīng)過軸上的定點,則,②,將①代入②得

          解得,得出為直徑的圓是過定點.

          解:(1)由,

          那么

          所以

          解得,所以離心率

          2)由題可知,

          ,則

          直線的方程:

          ,得,從而點坐標為

          直線的方程:

          ,得,從而點坐標為

          設以為直徑的圓經(jīng)過軸上的定點,則

          由①式得,代入②得

          解得

          所以為直徑的圓經(jīng)過軸上的定點.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網(wǎng)上調查,有2000位市民參加了投票,經(jīng)統(tǒng)計,得到如下頻率分布直方圖(部分圖):

          現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在的有5人.

          1)求的值,并填寫下表(2000位參與投票分數(shù)和人數(shù)分布統(tǒng)計);

          滿意程度(分數(shù))

          人數(shù)

          2)求市民投票滿意程度的平均分(各分數(shù)段取中點值);

          3)若滿意程度在5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1)若,求曲線在點處的切線方程;

          2)求函數(shù)的單調區(qū)間;

          3)若,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          1)求在點處的切線;

          2)研究函數(shù)的單調性,并求出極值;

          3)求證:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】直線與圓相交于兩點,的面積達到最大時,________.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          1)若,求的零點個數(shù);

          2)證明:,.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù),其中.

          1)若曲線在點處的切線與直線平行,求的方程;

          2)若,函數(shù)上為增函數(shù),求證:.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,在四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且,,分別為的中點.

          1)證明:平面;

          2)證明:平面平面;

          3)求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù).

          (1)若的極大值點,求的取值范圍;

          (2)當,時,方程(其中)有唯一實數(shù)解,求的值.

          查看答案和解析>>

          同步練習冊答案