日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列 ,滿足,.若存在最小的正整數(shù),使得,則可定義變換,變換將數(shù)列變?yōu)閿?shù)列.設(shè),

            (Ⅰ)若數(shù)列,試寫出數(shù)列;若數(shù)列,試寫出數(shù)列;

            (Ⅱ)證明存在唯一的數(shù)列,經(jīng)過有限次變換,可將數(shù)列變?yōu)閿?shù)列;

            (Ⅲ)若數(shù)列,經(jīng)過有限次變換,可變?yōu)閿?shù)列.設(shè),,求證,其中表示不超過的最大整數(shù).

           

          【答案】

           

          解:(Ⅰ)若,則; ;

                

          ,則 ; ; ; .                                                 ………4分

          (Ⅱ)先證存在性,若數(shù)列滿足,則定義變換,變換將數(shù)列變?yōu)閿?shù)列

          易知是互逆變換.                                         ………5分

          對(duì)于數(shù)列連續(xù)實(shí)施變換(一直不能再作變換為止)得

           

          則必有(若,則還可作變換).反過來對(duì)作有限次變換,即可還原為數(shù)列,因此存在數(shù)列滿足條件.

          下用數(shù)學(xué)歸納法證唯一性:當(dāng)是顯然的,假設(shè)唯一性對(duì)成立,考慮的情形.

          假設(shè)存在兩個(gè)數(shù)列均可經(jīng)過有限次變換,變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601133749595874/SYS201205260116037459319508_DA.files/image033.png">,這里

          ,則由變換的定義,不能變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601133749595874/SYS201205260116037459319508_DA.files/image033.png">;

          ,則,經(jīng)過一次變換,有

          由于,可知(至少3個(gè)1)不可能變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601133749595874/SYS201205260116037459319508_DA.files/image033.png">.

          所以,同理,

          ,

          ,所以,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601133749595874/SYS201205260116037459319508_DA.files/image050.png">

          ,

          故由歸納假設(shè),有,

          再由互逆,有

          ,

          所以,,從而唯一性得證.                   ………9分

          (Ⅲ)顯然,這是由于若對(duì)某個(gè),,則由變換的定義可知, 通過變換,不能變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601133749595874/SYS201205260116037459319508_DA.files/image065.png">.由變換的定義可知數(shù)列每經(jīng)過一次變換,的值或者不變,或者減少,由于數(shù)列經(jīng)有限次變換,變?yōu)閿?shù)列時(shí),有,

          所以為整數(shù),于是,

          所以除以后所得的余數(shù),即.………13分

          【解析】略

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•朝陽(yáng)區(qū)一模)已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A0:a0,a1,…,an(n∈N*),滿足a0=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A0變?yōu)門(A0):a0+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….
          (Ⅰ)若數(shù)列A0:0,1,1,3,0,0,試寫出數(shù)列A5;若數(shù)列A4:4,0,0,0,0,試寫出數(shù)列A0;
          (Ⅱ)證明存在數(shù)列A0,經(jīng)過有限次T變換,可將數(shù)列A0變?yōu)閿?shù)列n,
          0,0,…,0
          n個(gè)

          (Ⅲ)若數(shù)列A0經(jīng)過有限次T變換,可變?yōu)閿?shù)列n,
          0,0,…,0
          n個(gè)
          .設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證am=Sm-[
          Sm
          m+1
          ](m+1)
          ,其中[
          Sm
          m+1
          ]
          表示不超過
          Sm
          m+1
          的最大整數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:北京市朝陽(yáng)區(qū)2012屆高三3月第一次綜合練習(xí)數(shù)學(xué)理科試題 題型:044

          已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A0∶a0,a1,…,an(n∈N*),滿足a0=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A0變?yōu)閿?shù)列T(A0)∶a0+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….

          (Ⅰ)若數(shù)列A0∶0,1,1,3,0,0,試寫出數(shù)列A5;若數(shù)列A4∶4,0,0,0,0,試寫出數(shù)列A0;

          (Ⅱ)證明存在唯一的數(shù)列A0,經(jīng)過有限次T變換,可將數(shù)列A0變?yōu)閿?shù)列;

          (Ⅲ)若數(shù)列A0,經(jīng)過有限次T變換,可變?yōu)閿?shù)列.設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證am=Sm-[](m+1),其中[]表示不超過的最大整數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A:a,a1,…,an(n∈N*),滿足a=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A變?yōu)門(A):a+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….
          (Ⅰ)若數(shù)列A:0,1,1,3,0,0,試寫出數(shù)列A5;若數(shù)列A4:4,0,0,0,0,試寫出數(shù)列A;
          (Ⅱ)證明存在數(shù)列A,經(jīng)過有限次T變換,可將數(shù)列A變?yōu)閿?shù)列;
          (Ⅲ)若數(shù)列A經(jīng)過有限次T變換,可變?yōu)閿?shù)列.設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證,其中表示不超過的最大整數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A:a,a1,…,an(n∈N*),滿足a=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A變?yōu)門(A):a+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….
          (Ⅰ)若數(shù)列A:0,1,1,3,0,0,試寫出數(shù)列A5;若數(shù)列A4:4,0,0,0,0,試寫出數(shù)列A;
          (Ⅱ)證明存在數(shù)列A,經(jīng)過有限次T變換,可將數(shù)列A變?yōu)閿?shù)列;
          (Ⅲ)若數(shù)列A經(jīng)過有限次T變換,可變?yōu)閿?shù)列.設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證,其中表示不超過的最大整數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案