日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an},如果a1,a2-a1,a3-a2,…,an-an-1,是首項(xiàng)為1,公比為2的等比數(shù)列,那么an=( 。
          分析:由題意可得,an-an-1=2n-1,然后利用累加法,結(jié)合等比數(shù)列的求和公式即可求解
          解答:解:由題意可得,an-an-1=2n-1
          ∴a2-a1=2
          a3-a2=22

          an-an-1=2n-1
          以上n-1個(gè)式子相加可得,an-a1=2+22+…+2n-1=
          2(1-2n-1)
          1-2
          =2n-2
          ∴an=2n-1
          故選B
          點(diǎn)評(píng):本題主要考查了等比數(shù)列的通項(xiàng)公式、累加法在求數(shù)列的通項(xiàng)公式中的應(yīng)用及等比數(shù)列的求和公式的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足如圖所示的程序框圖.
          (I)寫(xiě)出數(shù)列{an}的一個(gè)遞推關(guān)系式;并求數(shù)列{an}的通項(xiàng)公式
          (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和Sn,證明不等式Sn+1≤4Sn,對(duì)任意n∈N*皆成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足如圖所示的流程圖
          (Ⅰ)寫(xiě)出數(shù)列{an}的一個(gè)遞推關(guān)系式;
          (Ⅱ)證明:{an+1-3an}是等比數(shù)列;并求出{an}的通項(xiàng)公式;
          (Ⅲ)求數(shù)列{n(an+3n-1)}的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列{an}滿足如圖所示的程序框圖.
          (Ⅰ)寫(xiě)出當(dāng)n=1,2,3時(shí)輸出的結(jié)果;
          (Ⅱ)寫(xiě)出數(shù)列{an}的一個(gè)遞推關(guān)系式,并證明:{an+1-3an}是等比數(shù)列;
          (Ⅲ)求{an}的通項(xiàng)公式及前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知數(shù)列{an}滿足如圖所示的程序框圖.
          (I)寫(xiě)出數(shù)列{an}的一個(gè)遞推關(guān)系式;
          (II)證明:{an+1-2an}是等比數(shù)列;
          (III)證明{
          an2n
          }
          是等差數(shù)列,并求{an}的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年福建省福州三中高三練習(xí)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知數(shù)列{an}滿足如圖所示的程序框圖.
          (I)寫(xiě)出數(shù)列{an}的一個(gè)遞推關(guān)系式;
          (II)證明:{an+1-2an}是等比數(shù)列;
          (III)證明是等差數(shù)列,并求{an}的通項(xiàng)公式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案