日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:f(x)=-sin2x+sinx+a
          (Ⅰ)當(dāng)f(x)=0有實(shí)數(shù)解時(shí),求實(shí)數(shù)a的取值范圍;
          (Ⅱ)若x∈R恒有1≤f(x)≤
          174
          成立,求實(shí)數(shù)a的取值范圍.
          分析:(1) 利用二次函數(shù)的性質(zhì)及正弦函數(shù)的值域求出a的最大值和a的最小值,即得實(shí)數(shù)a的取值范圍.
          (2)f(x)配方后結(jié)合正弦函數(shù)的值域,求出f(x)∈[-2+a,
          1
          4
          +a]
          ,再根據(jù)1≤f(x)≤
          17
          4
          恒成立

          得到
          1≤-2+a
          1
          4
          +a≤
          17
          4
          ,從而得到實(shí)數(shù)a的取值范圍.
          解答:解:(1)因?yàn)閒(x)=0,即a=sin2x-sinx=(sinx-
          1
          2
          )2-
          1
          4
          ,a的最大值等于(-1-
          1
          2
          )
          2
           -
          1
          4
          =2,
          a的最小值等于-
          1
          4
          ,所以,a∈[-
          1
          4
          ,2]

          (2)f(x)=-sin2x+sinx+a=-(sinx-
          1
          2
          )2+
          1
          4
          +a
          ,∴f(x)∈[-2+a,
          1
          4
          +a]
          ,
          又∵1≤f(x)≤
          17
          4
          恒成立
          ,∴
          1≤-2+a
          1
          4
          +a≤
          17
          4
          ,∴3≤a≤4.
          所以,實(shí)數(shù)a的取值范圍是[3,4].
          點(diǎn)評(píng):本題考查三角函數(shù)的最值,函數(shù)的恒成立問(wèn)題,以及正弦函數(shù)的有界性,得到
          1≤-2+a
          1
          4
          +a≤
          17
          4
           是解題的難點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過(guò)原點(diǎn),且在x=±1處的切線斜率均為-1.有以下命題:①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0.④若對(duì)?x∈[-2,2],k≤f'(x)恒成立,則k的最大值為2.其中正確命題的個(gè)數(shù)有( 。
          A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=exsinx.
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)如果對(duì)于任意的x∈[0,
          π
          2
          ],f(x)≥kx總成立,求實(shí)數(shù)k的取值范圍;
          (3)設(shè)函數(shù)F(x)=f(x)+excosx,x∈[-
          2011π
          2
          ,
          2013π
          2
          ].過(guò)點(diǎn)M(
          π-1
          2
          ,0
          )作函數(shù)F(x)圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和S的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=ex-a(x-1),x∈R,其中a為實(shí)數(shù).
          (1)若實(shí)數(shù)a>0,求函數(shù)f(x)在(0,+∞)上的極值.
          (2)記函數(shù)g(x)f(2x),設(shè)函數(shù)y=g(x)的圖象C與y軸交于P點(diǎn),曲線C在P點(diǎn)處的切線與兩坐標(biāo)軸所圍成的圖形的面積為S(a),當(dāng)a>1時(shí),求S(a)的最小值;
          (3)當(dāng)x∈(0,+∞)時(shí),不等式f(x)+f′(x)+x3-2x2≥0恒成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          a
          2x
          +xlnx
          ,g(x)=x3-x2-x-1.
          (1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
          (2)如果對(duì)任意的s,t∈[
          1
          3
          ,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•惠州一模)已知函數(shù)f(x)=ax2+bx+1在x=3處的切線方程為y=5x-8.
          (1)求函數(shù)f(x)的解析式;
          (2)若關(guān)于x的方程f(x)=kex恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)k的值;
          (3)數(shù)列{an}滿足2a1=f(2),an+1=f(an),n∈N*,求S=
          1
          a1
          +
          1
          a2
          +
          1
          a3
          +…+
          1
          a2013
          的整數(shù)部分.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案