日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19.如圖4,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)和居民區(qū)的公路,點(diǎn)所在的山坡面與山腳所在水平面所成的二面角為),且,點(diǎn)到平面的距離(km).沿山腳原有一段筆直的公路可供利用.從點(diǎn)到山腳修路的造價(jià)為萬元/km,原有公路改建費(fèi)用為萬元/km.當(dāng)山坡上公路長度為km()時(shí),其造價(jià)為萬元.已知,,.

          (I)在上求一點(diǎn),使沿折線修建公路的總造價(jià)最;

          (II) 對(duì)于(I)中得到的點(diǎn),在上求一點(diǎn),使沿折線修建公路的總造價(jià)最小.

          (III)在上是否存在兩個(gè)不同的點(diǎn)、,使沿折線修建公路的總造價(jià)小于(II)中得到的最小總造價(jià),證明你的結(jié)論.

                                                   圖4

          解:(I)如圖,,,由三垂線定理逆定理知,,所以是山坡與所成二面角的平面角,則,

          .

          設(shè).則.

          記總造價(jià)為萬元,

          據(jù)題設(shè)有

          當(dāng),即時(shí),總造價(jià)最小.

          (II)設(shè),,總造價(jià)為萬元,根據(jù)題設(shè)有

          .

          ,由,得.

          當(dāng)時(shí),,內(nèi)是減函數(shù);

          當(dāng)時(shí),,內(nèi)是增函數(shù).

          故當(dāng),即(km)時(shí)總造價(jià)最小,且最小總造價(jià)為萬元.

          (III)解法一:不存在這樣的點(diǎn),.

          事實(shí)上,在上任取不同的兩點(diǎn),.為使總造價(jià)最小,顯然不能位于之間.故可設(shè)位于之間,且=,,,總造價(jià)為萬元,則.類似于(I)、(II)的討論知,,當(dāng)且僅當(dāng),同時(shí)成立時(shí),上述兩個(gè)不等式等號(hào)同時(shí)成立,此時(shí),取得最小值,點(diǎn)分別與點(diǎn)重合,所以不存在這樣的點(diǎn),使沿折線修建公路的總造價(jià)小于(II)中得到的最小總造價(jià).

          解法二:同解法一得

          .

          當(dāng)且僅當(dāng),即同時(shí)成立時(shí),取得最小值,以下同解法一.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)P和居民區(qū)O的公路,點(diǎn)P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且sinθ=
          2
          5
          ,點(diǎn)P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用、從點(diǎn)O到山腳修路的造價(jià)為a萬元/km,原有公路改建費(fèi)用為
          a
          2
          萬元/km、當(dāng)山坡上公路長度為lkm(1≤l≤2)時(shí),其造價(jià)為(l2+1)a萬元、已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=
          3
          (km)

          (Ⅰ)在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價(jià)最。
          (Ⅱ)對(duì)于(I)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價(jià)最小.
          (Ⅲ)在AB上是否存在兩個(gè)不同的點(diǎn)D′,E′,使沿折線PD′E′O修建公路的總造價(jià)小于(Ⅱ)中得到的最小總造價(jià),證明你的結(jié)論、
          精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (07年湖南卷理)(12分)

          如圖4,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)和居民區(qū)的公路,點(diǎn)所在的山坡面與山腳所在水平面所成的二面角為),且,點(diǎn)到平面的距離(km).沿山腳原有一段筆直的公路可供利用.從點(diǎn)到山腳修路的造價(jià)為萬元/km,原有公路改建費(fèi)用為萬元/km.當(dāng)山坡上公路長度為km()時(shí),其造價(jià)為萬元.已知,,,

          (I)在上求一點(diǎn),使沿折線修建公路的總造價(jià)最;

          (II) 對(duì)于(I)中得到的點(diǎn),在上求一點(diǎn),使沿折線

          修建公路的總造價(jià)最小.

          (III)在上是否存在兩個(gè)不同的點(diǎn),,使沿折線修建公路的

          總造價(jià)小于(II)中得到的最小總造價(jià),證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (理)如圖a所示,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)P和居民區(qū)O的公路,點(diǎn)P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且sinθ=,點(diǎn)P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用.從點(diǎn)O到山腳修路的造價(jià)為a萬元/km,原有公路改建費(fèi)用為萬元/km.當(dāng)山坡上公路長度為l km(1≤l≤2)時(shí),其造價(jià)為(l2+1)a萬元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

          (1)在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價(jià)最;

          (2)對(duì)于(1)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價(jià)最。

          (3)在AB上是否存在兩個(gè)不同的點(diǎn)D′,E′,使沿折線.PD′E′O修建公路的總造價(jià)小于(2)中得到的最小總造價(jià)?證明你的結(jié)論.

          a)

          第19題圖

          (文)如圖b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.

          (1)求AC1與BC所成角的余弦值;

          (2)求二面角C1-BD-C的大;

          (3)設(shè)M是BD上的點(diǎn),當(dāng)DM為何值時(shí),D1M⊥平面A1C1D?并證明你的結(jié)論.

          第19題圖

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2007年湖南省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)P和居民區(qū)O的公路,點(diǎn)P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且,點(diǎn)P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用、從點(diǎn)O到山腳修路的造價(jià)為a萬元/km,原有公路改建費(fèi)用為萬元/km、當(dāng)山坡上公路長度為lkm(1≤l≤2)時(shí),其造價(jià)為(l2+1)a萬元、已知OA⊥AB,PB⊥AB,AB=1.5(km),
          (I)在AB上求一點(diǎn)D,使沿折線PDAO修建公路的總造價(jià)最。
          (II)對(duì)于(I)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線PDEO修建公路的總造價(jià)最。
          (III)在AB上是否存在兩個(gè)不同的點(diǎn)D',E',使沿折線PD'E'O修建公路的總造價(jià)小于(II)中得到的最小總造價(jià),證明你的結(jié)論、

          查看答案和解析>>

          同步練習(xí)冊答案