日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (文) 已知函數(shù) f(x)=-3x2+(6a-a2)x+b.
          (1)若不等式f(x)>0的解集為(-1,3)時,求實數(shù)a,b的值;
          (2)若f(1)=0,當(dāng)實數(shù)a變化時,求實數(shù)b的取值范圍.
          分析:(1)由已知中函數(shù) f(x)=-3x2+(6a-a2)x+b,不等式f(x)>0的解集為(-1,3),根據(jù)一元二次不等式與二次函數(shù)及一元二次方程之間的辯證關(guān)系,我們可得x=-1、x=3是方程3x2-a(6-a)x-b=0的兩實根,進(jìn)而由韋達(dá)來之不易(一元二次方程根與系數(shù)的關(guān)系)構(gòu)造關(guān)于a,b的方程,解方程即可得到實數(shù)a,b的值;
          (2)由已知中函數(shù) f(x)=-3x2+(6a-a2)x+b,且f(1)=0,我們可得b=(a-3)2-6,進(jìn)而根據(jù)二次函數(shù)的圖象和性質(zhì),即可得到實數(shù)b的取值范圍.
          解答:解:(1)故x=-1、x=3是方程3x2-a(6-a)x-b=0的兩實根,
          由韋達(dá)定理,得
          -1+3-
          a(6-a)
          3
          -1×3-(-
          b
          3
          )
          a-3±
          3
          b-9
                              …(8分)
          (2)由f(1)=0得
          b=(a-3)2-6,
          ∴b∈[-6,+∞)…(14分)
          點評:本題考查的知識點二次函數(shù)的性質(zhì),一元二次不等式的應(yīng)用,其中根據(jù)一元二次不等式解集的端點與二次函數(shù)的零點及一元二次方程的根之間的關(guān)系,將問題轉(zhuǎn)化為x=-1、x=3是方程3x2-a(6-a)x-b=0的兩實根,是解答本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)(文)已知函數(shù)f(x)=x3+ax2+bx+2與直線4x-y+5=0切于點P(-1,1).
          (Ⅰ)求實數(shù)a,b的值;
          (Ⅱ)若x>0時,不等式f(x)≥mx2-2x+2恒成立,求實數(shù)m的取值范圍.

          (理) 已知正四棱柱ABCD-A1B1C1D1底面邊長AB=2,側(cè)棱BB1的長為4,過點B作B1C的垂線交側(cè)棱CC1于點E,交線段B1C于點F.以D為原點,DA、DC、DD1所在直線分別為x、y、z軸建立空間直角坐標(biāo)系D-xyz,如圖.
          (Ⅰ)求證:A1C⊥平面BED;
          (Ⅱ)求A1B與平面BDE所成角的正弦值的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (文)已知函數(shù)f(x)=2x-1的反函數(shù)為f-1(x),g(x)=log4(3x+1)
          (1)f-1(x);
          (2)用定義證明f-1(x)在定義域上的單調(diào)性;
          (3)若f-1(x)≤g(x),求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (文)已知函數(shù)f(x)=ax3-bx2+9x+2,若f(x)在x=1處的切線方程是3x+y-6=0.
          (1)求f(x)的解析式及單調(diào)區(qū)間;
          (2)若對于任意的x∈[
          14
          ,2]
          ,都有f(x)≥t2-2t-1成立,求函數(shù)g(t)=t2+t-2的最小值及最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•武漢模擬)(文) 已知函數(shù)f(x)=
          3
          sin4x
          cos2x
          -4sin2x.
          (1)求函數(shù)f(x)的定義域和最大值;  
          (2)求函數(shù)f(x)的單調(diào)增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (文)已知函數(shù)f(x)=
          aa2-2
          (ax-a-x)
          (a>0,a≠1).
          (1)判斷f(x)的奇偶性;
          (2)若f(x)在R上是單調(diào)遞增函數(shù),求實數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案