【題目】如圖,在多邊形中(圖1).四邊形
為長方形,
為正三角形,
,
,現(xiàn)以
為折痕將
折起,使點
在平面
內(nèi)的射影恰好是
的中點(圖2).
(1)證明:平面
:
(2)若點在線段
上,且
,求二面角
的余弦值.
【答案】(1)見解析(2)
【解析】
(1)過點作
,垂足為
,由于點
在平面
內(nèi)的射影恰好是
中點,可得
平面
,進(jìn)一步得到
,又因為
,
,則
平面
;
(2)取的中點
,以
為坐標(biāo)原點,以
,
,
分別為
、
、
軸的正方向建立空間直角坐標(biāo)系,分別求出平面
和平面
的法向量,代入夾角公式可求出結(jié)果.
(1)作的中點
,連接
,由題知
平面
.
因為,所以
,
又因為,
所以平面
.
(2)取的中點
,連接
,則
,
,
,以
為坐標(biāo)原點,以
,
,
分別為
、
、
軸的正方向建立空間直角坐標(biāo)系.
則,
,
,
,
,
設(shè)平面的一個法向量為
則有,令
,所以
易知平面的一個法向量為
所以,
所以二面角的余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位同學(xué)在一項集訓(xùn)中的40次測試分?jǐn)?shù)都在[50,100]內(nèi),將他們的測試分?jǐn)?shù)分別繪制成頻率分布直方圖,如圖所示,記甲、乙、丙的分?jǐn)?shù)標(biāo)準(zhǔn)差分別為s1,s2,s3,則它們的大小關(guān)系為( )
A.s1s2
s3B.s1
s3
s2
C.s3s1
s2D.s3
s2
s1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點的動直線l與y軸交于點
,過點T且垂直于l的直線
與直線
相交于點M.
(1)求M的軌跡方程;
(2)設(shè)M位于第一象限,以AM為直徑的圓與y軸相交于點N,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),
(1)討論函數(shù)f(x)的單調(diào)性;
(2)證明:a=1時,f(x)+g(x)﹣(1)lnx>e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的等邊三角形且垂直于底,
是
的中點。
(1)證明:直線平面
;
(2)點在棱
上,且直線
與底面
所成角為
,求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)的右頂點為
.左、右焦點分別為
,
,過點
且垂直于
軸的直線交橢圓于點
(
在第象限),直線
的斜率為
,與
軸交于點
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點的直線與橢圓交于
、
兩點(
、
不與
、
重合),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由
個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè)
,若在大正六邊形中隨機(jī)取一點,則此點取自小正六邊形的概率為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠商調(diào)查甲、乙兩種不同型號電視機(jī)在10個賣場的銷售量(單位:臺),并根據(jù)這10個賣場的銷售情況,得到如圖所示的莖葉圖.
為了鼓勵賣場,在同型號電視機(jī)的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場命名為該型號電視機(jī)的“星級賣場”.
(1)當(dāng)時,記甲型號電視機(jī)的“星級賣場”數(shù)量為
,乙型號電視機(jī)的“星級賣場”數(shù)量為
,比較
的大小關(guān)系;
(2)在這10個賣場中,隨機(jī)選取2個賣場,記為其中甲型號電視機(jī)的“星級賣場”的個數(shù),求
的分布列和數(shù)學(xué)期望;
(3)若,記乙型號電視機(jī)銷售量的方差為
,根據(jù)莖葉圖推斷
為何值時,
達(dá)到最小值.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)與
的圖象有兩個不同的交點
,
,求實數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com