【題目】如圖,在四棱錐中,ABCD為矩形,
是以
為直角的等腰直角三角形,平面
平面ABCD.
(1)證明:平面平面PBC;
(2)為直線PC的中點(diǎn),且
,求二面角
的正弦值.
【答案】(1)證明見詳解;(2).
【解析】
(1)由ABCD為矩形,得,再由面面垂直的性質(zhì)可得
平面PAB,則
,結(jié)合
,由線面垂直的判定可得
平面PAD,進(jìn)一步得到平面
平面PBC;
(2)取AB中點(diǎn)O,分別以OP,OB所在直線為x,y軸建立空間直角坐標(biāo)系,分別求出平面MAD與平面MBD的一個(gè)法向量,由兩法向量所成角的余弦值可得二面角的余弦值,再由平方關(guān)系求得二面角
的正弦值.
(1)證明:為矩形,
,
平面
平面ABCD,平面
平面
,
平面PAB,則
,
又,
,
平面PAD,而
平面PBC,
平面
平面PBC,即證.
(2)取AB中點(diǎn)O,分別以OP,OB所在直線為x,y軸建立空間直角坐標(biāo)系,
由,
是以
為直角的等腰直角三角形,
得:,
,
,
,
,
,
.
設(shè)平面MAD的一個(gè)法向量為,
由可得
,
取,得
;
設(shè)平面MBD的一個(gè)法向量為,
由可得
,
取,得
.
.
設(shè)二面角的平面角為
,
則.
二面角
的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個(gè)平面互相垂直,FB∥AE且FB=2EA.
(1)證明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
是實(shí)數(shù).
(1)當(dāng)時(shí),求證:
在定義域內(nèi)是增函數(shù);
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,左、右焦點(diǎn)分別是
,橢圓
上短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
;
(1)求橢圓的方程;
(2)過作垂直于
軸的直線
交橢圓
于
兩點(diǎn)(點(diǎn)
在第二象限),
是橢圓上位于直線
兩側(cè)的動(dòng)點(diǎn),若
,求證:直線
的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)在R上的圖象是連續(xù)不斷的一條曲線,且圖象關(guān)于原點(diǎn)對稱,其導(dǎo)函數(shù)為f'(x),當(dāng)x>0時(shí),x2f'(x)>﹣2xf(x)成立,若x∈R,e2xf(ex)﹣a2x2f(ax)>0恒成立,則a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列中,
,且
,
,
成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足
,數(shù)列
的前n項(xiàng)和為
,若不等式
對一切
恒成立,求
的取值范圍.
(3)設(shè)數(shù)列的前n項(xiàng)和為
,求證:對任意正整數(shù)n,都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜批發(fā)商經(jīng)銷某種新鮮蔬菜(以下簡稱蔬菜),購入價(jià)為200元/袋,并以300元/袋的價(jià)格售出,若前8小時(shí)內(nèi)所購進(jìn)的
蔬菜沒有售完,則批發(fā)商將沒售完的
蔬菜以150元/袋的價(jià)格低價(jià)處理完畢(根據(jù)經(jīng)驗(yàn),2小時(shí)內(nèi)完全能夠把
蔬菜低價(jià)處理完,且當(dāng)天不再購進(jìn)).該蔬菜批發(fā)商根據(jù)往年的銷量,統(tǒng)計(jì)了100天
蔬菜在每天的前8小時(shí)內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.
(1)若某天該蔬菜批發(fā)商共購入6袋蔬菜,有4袋
蔬菜在前8小時(shí)內(nèi)分別被4名顧客購買,剩下2袋在8小時(shí)后被另2名顧客購買.現(xiàn)從這6名顧客中隨機(jī)選2人進(jìn)行服務(wù)回訪,則至少選中1人是以150元/袋的價(jià)格購買的概率是多少?
(2)以上述樣本數(shù)據(jù)作為決策的依據(jù).
(i)若今年蔬菜上市的100天內(nèi),該蔬菜批發(fā)商堅(jiān)持每天購進(jìn)6袋
蔬菜,試估計(jì)該蔬菜批發(fā)商經(jīng)銷
蔬菜的總盈利值;
(ii)若明年該蔬菜批發(fā)商每天購進(jìn)蔬菜的袋數(shù)相同,試幫其設(shè)計(jì)明年的
蔬菜的進(jìn)貨方案,使其所獲取的平均利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ2﹣6ρcosθ+5=0,曲線C2的參數(shù)方程為(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程,并說明是什么曲線?
(2)若曲線C1與C2相交于A、B兩點(diǎn),求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)、點(diǎn)
及拋物線
.
(1)若直線過點(diǎn)
及拋物線
上一點(diǎn)
,當(dāng)
最大時(shí)求直線
的方程;
(2)軸上是否存在點(diǎn)
,使得過點(diǎn)
的任一條直線與拋物線
交于點(diǎn)
,且點(diǎn)
到直線
的距離相等?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com