日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】用半徑為R的圓鐵皮剪一個內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時,該圓鐵皮面積與其內(nèi)接矩形的面積比為(
          A.
          B.
          C.
          D.

          【答案】C
          【解析】解:設(shè)圓柱的高為x,則其為內(nèi)接矩形的一邊長,那么另一邊長為y=2 , ∴圓柱的體積V(X)=πy2x= =π(﹣x3+4R2x),(0<x<2R),
          ∴V′(x)=π(﹣3x2+4R2),
          列表如下:

          x

          (0,

          ,2R)

          V′(x)

          +

          0

          ∴當x= 時,此圓柱體積最大.
          ∴圓柱體體積最大時,該圓內(nèi)接矩形的兩條邊長分別為 和2 = ,
          ∴圓柱的體積最大時,該圓鐵皮面積與其內(nèi)接矩形的面積比為:
          =
          故選:C.
          設(shè)圓柱的高為x,則其為內(nèi)接矩形的一邊長,那么另一邊長為y=2 ,利用導(dǎo)數(shù)性質(zhì)求出當x= 時,此圓柱體積最大.由此能求出圓柱的體積最大時,該圓鐵皮面積與其內(nèi)接矩形的面積比.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)是定義在區(qū)間(0,+∞)內(nèi)的單調(diào)函數(shù),且對x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設(shè)f′(x)為f(x)的導(dǎo)函數(shù),則函數(shù)g(x)=f(x)﹣f′(x)的零點個數(shù)為(
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= (a,b∈R,且a≠0,e為自然對數(shù)的底數(shù)).
          (1)若曲線f(x)在點(e,f(e))處的切線斜率為0,且f(x)有極小值,求實數(shù)a的取值范圍.
          (2)①當 a=b=l 時,證明:xf(x)+2<0; ②當 a=1,b=﹣1 時,若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內(nèi)恒成立,求實數(shù)m的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】己知函數(shù),則不等式的解集是_______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知平面直角坐標系xOy中,以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系,P點的極坐標為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
          (Ⅰ)寫出點P的直角坐標及曲線C的直角坐標方程;
          (Ⅱ)若Q為曲線C上的動點,求PQ的中點M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,,,,、分為、的中點,

          )求證:平面平面

          )若,求四面體的體積.

          設(shè),若平面與平面所成銳二面角,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: (a>b>0)的離心率為 ,直線l:y=x+2與以原點為圓心、橢圓C的短半軸為半徑的圓O相切.
          (1)求橢圓C的方程;
          (2)過橢圓C的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若關(guān)于x的方程|x4x3|=axR上存在4個不同的實根,則實數(shù)a的取值范圍為(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,函數(shù).

          1)若上單調(diào)遞增,求正數(shù)的最大值;

          2)若函數(shù)內(nèi)恰有一個零點,求的取值范圍.

          查看答案和解析>>

          同步練習冊答案