已知,點(diǎn)B是
軸上的動(dòng)點(diǎn),過B作AB的垂線
交
軸于點(diǎn)Q,若
,
.
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線
的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說明理由。
(1) y2=x,此即點(diǎn)P的軌跡方程;
(2)存在定直線x=,以PM為直徑的圓與直線x=
的相交弦長(zhǎng)為定值
。
解析試題分析:(1)設(shè)B(0,t),設(shè)Q(m,0),t2=|m|,
m
0,m=-4t2,
Q(-4t2,0),設(shè)P(x,y),則
=(x-
,y),
=(-4t2-
,0),2
=(-
,2 t),
+
=2
。
(x-
,y)+ (-4t2-
,0)= (-
,2 t),
x=4t2,y="2" t,
y2=x,此即點(diǎn)P的軌跡方程; 6分。
(2)由(1),點(diǎn)P的軌跡方程是y2=x;設(shè)P(y2,y),M (4,0) ,則以PM為直徑的圓的圓心即PM的中點(diǎn)T(
,
), 以PM為直徑的圓與直線x=a的相交弦長(zhǎng):
L=2
=2=2
10分
若a為常數(shù),則對(duì)于任意實(shí)數(shù)y,L為定值的條件是a-="0," 即a=
時(shí),L=
存在定直線x=
,以PM為直徑的圓與直線x=
的相交弦長(zhǎng)為定值
。13分
考點(diǎn):本題主要考查拋物線方程,軌跡方程的求法,直線與圓的位置關(guān)系,平面向量的坐標(biāo)運(yùn)算。
點(diǎn)評(píng):中檔題,首先利用幾何條件,確定向量的坐標(biāo),并運(yùn)用向量的坐標(biāo)運(yùn)算,確定得到拋物線方程。在直線與圓的去位置關(guān)系研究中,充分利用了圓的“特征三角形”,確定弦長(zhǎng)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直線的方向向量為
,且過點(diǎn)
,將直線
繞著它與x軸的交點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)一個(gè)銳角
得到直線
,直線
:
.(k
R).
(1)求直線和直線
的方程;
(2)當(dāng)直線,
,
所圍成的三角形的面積為3時(shí),求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,
,
,
,
,
為正實(shí)數(shù).
(Ⅰ)若,求
的值;
(Ⅱ)若,求
的值;
(Ⅲ)當(dāng)時(shí),若
,試確定
與
的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知空間向量,
,
·
=
,
∈(0,
).
(1)求及
,
的值;
(2)設(shè)函數(shù),求
的最小正周期和圖象的對(duì)稱中心坐標(biāo);
(3)求函數(shù)在區(qū)間
上的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com