已知橢圓C:(
)的短軸長為2,離心率為
.
(1)求橢圓C的方程
(2)若過點M(2,0)的引斜率為的直線與橢圓C相交于兩點G、H,設(shè)P為橢圓C上一點,且滿足
(O為坐標(biāo)原點),當(dāng)
時,求實數(shù)
的取值范圍?
(1);(2)
.
解析試題分析:(1)由題意知,所以
,由此能求出橢圓C的方程;(2設(shè)直線方程為
,聯(lián)立直線方程與橢圓方程,再由根的判別式和嘏達定理進行求解.
試題解析:(1).
(2)設(shè)直線,聯(lián)立橢圓,
得
,
條件轉(zhuǎn)換一下一下就是
,根據(jù)弦長公式,得到
.
然后把把P點的橫縱坐標(biāo)用
表示出來,
設(shè),其中要把
分別用直線代換,
最后還要根據(jù)根系關(guān)系把消成
,得
.
然后代入橢圓,得到關(guān)系式,
所以,根據(jù)
利用已經(jīng)解的范圍得到
.
考點:1.橢圓方程及幾何意義;2.直線與圓錐曲線的綜合問題;3.平面向量的坐標(biāo)運算;4.平面向量的模.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點與分別在
軸、
軸上的動點
滿足:
,動點
滿足
.
(1)求動點的軌跡的方程;
(2)設(shè)過點任作一直線與點
的軌跡交于
兩點,直線
與直線
分別交于點
(
為坐標(biāo)原點);
(i)試判斷直線與以
為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點
,其左、右頂點分別是
、
,左、右焦點分別是
、
,
(異于
、
)是橢圓上的動點,連接
交直線
于
、
兩點,若
成等比數(shù)列.
(1)求此橢圓的離心率;
(2)求證:以線段為直徑的圓過點
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點F和橢圓的右焦點重合,直線
過點F交拋物線于A、B兩點.
(1)求拋物線C的方程;
(2)若直線交y軸于點M,且
,m、n是實數(shù),對于直線
,m+n是否為定值?
若是,求出m+n的值;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦點在
軸上,離心率為
,對稱軸為坐標(biāo)軸,且經(jīng)過點
.
(1)求橢圓的方程;
(2)直線與橢圓
相交于
、
兩點,
為原點,在
、
上分別存在異于
點的點
、
,使得
在以
為直徑的圓外,求直線斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,點P到兩圓C1與C2的圓心的距離之和等于4,其中C1:
,C2:
. 設(shè)點P的軌跡為
.
(1)求C的方程;
(2)設(shè)直線與C交于A,B兩點.問k為何值時
?此時
的值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C:=1(a>b>0)的離心率為
,其左焦點到點P(2,1)的距離為
.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線x2=4y的焦點為F,過焦點F且不平行于x軸的動直線交拋物線于A、B兩點,拋物線在A、B兩點處的切線交于點M.
(1)求證:A、M、B三點的橫坐標(biāo)成等差數(shù)列;
(2)設(shè)直線MF交該拋物線于C、D兩點,求四邊形ACBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)下列條件,求雙曲線方程.
(1)與雙曲線=1有共同的漸近線,且過點(-3,2
);
(2)與雙曲線=1有公共焦點,且過點(3
,2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com