(本小題滿分12分)對(duì)于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:①
在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[
]
,使
在[
]上的值域?yàn)閇
];那么把
(
)叫閉函數(shù)。(1)求閉函數(shù)
符合條件②的區(qū)間[
];
(2)判斷函數(shù)是否為閉函數(shù)?并說(shuō)明理由;
(3)判斷函數(shù)是否為閉函數(shù)?若是閉函數(shù),求實(shí)數(shù)
的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(1)畫(huà)函數(shù)f(x)的圖像 .(2)求的單調(diào)區(qū)間.
(3)求函數(shù)f(x)的定義域,值域.
(4)判斷并證明函數(shù)f(x)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若,求
的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分16分)定義在的函數(shù)
(1)對(duì)任意的都有
;
(2)當(dāng)時(shí),
,回答下列問(wèn)題:
①判斷在
的奇偶性,并說(shuō)明理由;
②判斷在
的單調(diào)性,并說(shuō)明理由;
③若,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)函數(shù)的導(dǎo)函數(shù)為
,若函數(shù)
的圖像關(guān)于直線
對(duì)稱,且
.
(1)求實(shí)數(shù)a、b的值
(2)若函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)
的最小值.
(Ⅱ)若對(duì)任意恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)如果存在,使函數(shù)
在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)镽的函數(shù)是奇函數(shù)。
(1)求的值;
(2)用定義證明在
上為減函數(shù);
(3)若對(duì)于任意,不等式
恒成立,求
的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com