日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ”是“直線垂直”的(   )

          A. 充分不必要條件 B. 必要不充分條件

          C. 充要條件                  D. 既不充分也不必要條件

           

          【答案】

          A

          【解析】

          試題分析:顯然”是“直線和直線垂直”的充分條件.另一方面,直線和直線垂直,則,所以“”是“直線和直線垂直”的充分不必要條件.

          考點(diǎn):直線的方程、充要條件、兩條直線垂直的條件.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)F(-
          1
          4
          ,0)
          ,直線l:x=
          1
          4
          ,點(diǎn)B是直線l上的動(dòng)點(diǎn),若過B垂直于y軸的直線與線段BF的垂直平分線交于點(diǎn)M,則點(diǎn)M所在曲線是( 。
          A、圓B、橢圓C、雙曲線D、拋物線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖1,在平面內(nèi),ABCD是∠BAD=60°,且AB=a的菱形,ADD′′A1和CD D′C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D′′與D′重合于點(diǎn)D1.設(shè)直線l過點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).
          (Ⅰ) 設(shè)二面角E-AC-D1的大小為θ,若
          π
          4
          ≤θ≤
          π
          3
          ,求線段BE長的取值范圍;
          (Ⅱ)在線段D1E上存在點(diǎn)P,使平面PA1C1∥平面EAC,求
          D1P
          PE
          與BE之間滿足的關(guān)系式,并證明:當(dāng)0<BE<a時(shí),恒有
          D1P
          PE
          <1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖1,在平面內(nèi),ABCD是AB=2,BC=
          2
          的矩形,△PAB是正三角形,將△PAB沿AB折起,使PC⊥BD,如圖2,E為AB的中點(diǎn),設(shè)直線l過點(diǎn)C且垂直于矩形ABCD所在平面,點(diǎn)F是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)P位于平面ABCD的同側(cè).
          (1)求證:PE⊥平面ABCD;
          (2)設(shè)二面角F-PB-D的平面角為θ,若θ≥45°,求線段CF長的取值范圍.精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•宣武區(qū)一模)已知P1(x1,y1)是直線l:f(x,y)=0上的一點(diǎn),P2(x2,y2)是直線l外的一點(diǎn),由方程f(x,y)+f(x1,y1)+f(x2,y2)=0表示的直線與直線l的位置關(guān)系是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖1,在平面內(nèi),ABCD是AB=2,BC=
          2
          的矩形,△PAB是正三角形,將△PAB沿AB折起,使PC⊥BD,如圖2,E為AB的中點(diǎn),設(shè)直線l過點(diǎn)C且垂直于矩形ABCD所在平面,點(diǎn)F是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)P位于平面ABCD的同側(cè).
          (1)求證:PE⊥平面ABCD;
          (2)設(shè)直線PF與平面PAB所成的角為θ,若45°<θ≤60°,求線段CF長的取值范圍.
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習(xí)冊答案