日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,四棱錐的底面為直角梯形,,,,底面,的中點(diǎn).
          (Ⅰ)求證:平面平面;
          (Ⅱ)求直線與平面所成的角;
          (Ⅲ)求點(diǎn)到平面的距離.
          (Ⅰ)見解析
          (Ⅱ)直線與平面所成的角為
          (Ⅲ)點(diǎn)到平面的距離等于

          (Ⅰ)設(shè)交點(diǎn)為,延長(zhǎng)的延長(zhǎng)線于點(diǎn)
          ,∴,∴,∴
          又∵,∴,
          又∵,∴,
          ,∴
          又∵底面,∴,∴平面,
          平面,∴平面平面…………………………………(4分)
          (Ⅱ)連結(jié),過點(diǎn)點(diǎn),
          則由(Ⅰ)知平面平面,
          是交線,根據(jù)面面垂直的性質(zhì),
          平面,從而
          為直線與平面所成的角.
          中,,
          中,
          . 所以有
          即直線與平面所成的角為…………………………………(8分)
          (Ⅲ)由于,所以可知點(diǎn)到平面的距離等于點(diǎn)到平面的距離的,即. 在中,,
          從而點(diǎn)到平面的距離等于………………………………………………(12分)
          解法二:如圖所示,以點(diǎn)為坐標(biāo)原點(diǎn),
          直線分別為軸,
          建立空間直角坐標(biāo)系,
          則相關(guān)點(diǎn)的坐標(biāo)為
          ,,.
          (Ⅰ)由于,,         
          ,         
          所以,
          ,
          所以,
          ,所以平面,∵平面,
          ∴平面平面……………………………………………………………(4分)
          (Ⅱ)設(shè)是平面的一個(gè)法向量,則
          由于,,所以有
          ,
          ,則,即
          再設(shè)直線與平面所成的角為,而,
          所以,
          ,因此直線與平面所成的角為………………(8分)
          (Ⅲ)由(Ⅱ)知是平面的一個(gè)法向量,而
          所以點(diǎn)到平面的距離為
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,二面角D—AB—E的大小為,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
          ⑴求證AE⊥平面BCE;
          ⑵求二面角B—AC—E的正弦值;
          ⑶求點(diǎn)D到平面ACE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,四棱錐P—ABCD的底面是正方形,PA底面ABCD,PA=2,,

          點(diǎn)E,F(xiàn)分別為棱AB,PD的中點(diǎn)。
          (I)在現(xiàn)有圖形中,找出與AF平行的平面,并給出證明;
          (II)判斷平面PCE與平面PCD是否垂直?若垂直,給出證明;若不垂直,說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知三棱柱中,側(cè)棱垂直于底面,底面△ABC中,點(diǎn)的中點(diǎn)。
          (1)求證:
          (2)求證:                     
          (3)求。
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          如圖3,在正三棱柱中,AB=4,,點(diǎn)DBC的中點(diǎn),
          點(diǎn)EAC上,且DEE。

          (Ⅰ)證明:平面平面
          (Ⅱ)求直線AD和平面所成角的正弦值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,∠, AB∥CD,AD=CD=2AB=2,E,F(xiàn)分別是PC,CD的中點(diǎn).
          (Ⅰ)證明:CD⊥平面BEF;
          (Ⅱ)設(shè)
          k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          長(zhǎng)方體的長(zhǎng)、寬、高分別為a,b,c,對(duì)角線長(zhǎng)為l,則下列結(jié)論正確的是      (所有正確的序號(hào)都寫上)。
          (1);(2);(3);(4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在直三棱柱ABC-A1B1C1中,E是BC的中點(diǎn)。
          (1)求異面直線AE與A1C所成的角;
          (2)若G為C1C上一點(diǎn),且EG⊥A1C,試確定點(diǎn)G的位置;
          (3)在(2)的條件下,求二面角A1-AG-E的大。ㄎ目魄笃湔兄担

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知球的半徑為1,三點(diǎn)都在球面上,且每?jī)牲c(diǎn)間的球面距離均為,則球心到平面的距離為         

          查看答案和解析>>

          同步練習(xí)冊(cè)答案